
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 10:
Trees

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Categories of Data-Management
Operations

• General: Operations that
– Insert data into a data collection
– Delete data from a data collection
– Ask questions about the data in a data collection

• Position-oriented ADTs: Operations that
– Insert data into the ith position
– Delete data from the ith position
– Ask a question about the data in the ith position
– Examples: list, stack, queue, binary tree

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Categories of Data-Management
Operations

• Value-oriented ADTs: Operations that
– Insert data according to its value
– Delete data knowing only its value
– Ask a question about data knowing only its value
– Examples: sorted list, binary search tree

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Terminology

• Trees are composed of nodes and edges
• Trees are hierarchical

– Parent-child relationship between two nodes
– Ancestor-descendant relationships among

nodes
• Subtree of a tree: Any node and its

descendants

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Terminology

Figure 10-1 A general tree Figure 10-2

A subtree of the tree in Figure 10-1

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Terminology

• General tree
– A general tree T is a set of one or more nodes

such that T is partitioned into disjoint subsets:
• A single node r, the root
• Sets that are general trees, called subtrees of r

2

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Terminology

• Parent of node n
– The node directly above node n in the tree

• Child of node n
– A node directly below node n in the tree

• Root
– The only node in the tree with no parent

• Subtree of node n
– A tree that consists of a child (if any) of node n and the

child’s descendants

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Terminology

• Leaf
– A node with no children

• Siblings
– Nodes with a common parent

• Ancestor of node n
– A node on the path from the root to n

• Descendant of node n
– A node on a path from n to a leaf

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Binary Tree

• A binary tree is a set T of nodes such that
either
– T is empty, or
– T is partitioned into three disjoint subsets:

• A single node r, the root
• Two possibly empty sets that are binary trees, called

the left subtree of r and the right subtree of r

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A General Tree & A Binary Tree

Figure 10-3 (a) An organization chart; (b) a family tree

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

More Binary Trees

Figure 10-4 Binary trees that represent algebraic expressions

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Binary Search Tree

• A binary search tree
– A binary tree that has the following properties

for each node n
• n’s value is > all values in n’s left subtree TL

• n’s value is < all values in n’s right subtree TR

• Both TL and TR are binary search trees

3

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Binary Search Tree

Figure 10-5

A binary search tree of names

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Height of Trees

• Height of a tree
– Number of nodes along the longest path from

the root to a leaf

 Height 3 Height 5 Height 7

Figure 10-6

Binary trees with

the same nodes but

different heights

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Height of Trees

• Level of a node n in a tree T
– If n is the root of T, it is at level 1
– If n is not the root of T, its level is 1 greater than the

level of its parent
• Height of a tree T defined in terms of the levels of

its nodes
– If T is empty, its height is 0
– If T is not empty, its height is equal to the maximum

level of its nodes

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Height of Trees

• A recursive definition of height
– If T is empty, its height is 0
– If T is not empty,

height(T) = 1 + max{height(TL), height(TR)}
r

 / \
 TL TR

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Full Binary Trees

• A binary tree of height h is full if
– Nodes at levels < h have two

children each
• Recursive definition

– If T is empty, T is a full binary tree
of height 0

– If T is not empty and has height h >
0, T is a full binary tree if its root’s
subtrees are both full binary trees of
height h – 1

Figure 10-7

A full binary tree of height 3

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Complete Binary Trees

• A binary tree of height h is complete if
– It is full to level h – 1, and
– Level h is filled from left to right

4

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Complete Binary Trees

Figure 10-8 A complete binary tree

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Complete Binary Trees

Another definition:
• A binary tree of height h is complete if

– All nodes at levels <= h – 2 have two children
each, and

– When a node at level h – 1 has children, all
nodes to its left at the same level have two
children each, and

– When a node at level h – 1 has one child, it is a
left child

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Balanced Binary Trees

• A binary tree is balanced if the heights of
any node’s two subtrees differ by no more
than 1

• Complete binary trees are balanced
• Full binary trees are complete and balanced

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Binary Tree

Figure 10-9

UML diagram for the class BinaryTree

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Binary Tree

• Building the ADT binary tree in Fig. 10-6b
tree1.setRootData(‘F’)

tree1.attachLeft(‘G’)

tree2.setRootData(‘D’)

tree2.attachLeftSubtree(tree1)

tree3.setRootData(‘B’)

tree3.attachLeftSubtree(tree2)

tree3.attachRight(‘E)

tree4.setRootData(‘C’)

tree10_6.createBinaryTree(‘A’,tree3,tree4)

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Traversals of a Binary Tree

• A traversal visits each node in a tree
• You do something with or to the node during a visit

– For example, display the data in the node

• General form of a recursive traversal algorithm
 traverse (in binTree:BinaryTree)

if (binTree is not empty)
{ traverse(Left subtree of binTree’s root)
 traverse(Right subtree of binTree’s root)
}

5

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Traversals of a Binary Tree

• Preorder traversal
– Visit root before visiting its subtrees

• i. e. Before the recursive calls
• Inorder traversal

– Visit root between visiting its subtrees
• i. e. Between the recursive calls

• Postorder traversal
– Visit root after visiting its subtrees

• i. e. After the recursive calls

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Traversals of a Binary Tree

Figure 10-10

Traversals of a binary tree: (a) preorder; (b) inorder; (c) postorder

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Traversals of a Binary Tree

• A traversal operation can call a function to
perform a task on each item in the tree
– This function defines the meaning of “visit”
– The client defines and passes this function as an

argument to the traversal operation

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Possible Representations of a
Binary Tree

• An array-based representation
– Uses an array of tree nodes
– Requires the creation of a free list that keeps

track of available nodes
• A pointer-based representation

– Nodes have two pointers that link the nodes in
the tree

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Array-based ADT Binary Tree

Figure 10-11 (a) A binary tree of names; (b) its array-based implementation

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Array-based Representation of a
Complete Binary Tree

• If a binary tree is complete and remains
complete
– A memory-efficient array-based implementation

is possible AND attractive

6

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Array-based Representation of a
Complete Binary Tree

Figure 10-12 Level-by-level

numbering of a complete binary tree

Figure 10-13 An array-based implementation

of the complete tree in Figure 10-12

32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

Figure 10-14 A pointer-based implementation of a binary tree

33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

• TreeException and TreeNode classes
• BinaryTree class

– Several constructors, including a
• Protected constructor whose argument is a pointer to

a root node; prohibits client access
• Copy constructor that calls a private function to

copy each node during a traversal of the tree
– Destructor

34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

• BinaryTree class (continued)
– isEmpty, getRootData, setRootData
– attachLeft, attachRight
– attachLeftSubtree, attachRightSubtree
– detachLeftSubtree, detachRightSubtree
– getLeftSubtree, getRightSubtree
– Overloaded assignment operator

35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree:
Tree Traversals

• BinaryTree class (continued)
– Public methods for traversals so that visiting a node remains

on the client’s side of the wall
void inorderTraverse(FunctionType visit);
typedef void (*FunctionType)(TreeItemType&
 item);
– Protected methods, such as inorder, that enable the

recursion
void inorder(TreeNode *treeptr,

 FunctionType visit);
– inorderTraverse calls inorder, passing it a node

pointer and the client-defined function visit

36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree:
Recursive Inorder Traversal

Figure 10-15 Contents of the implicit stack as treePtr progresses through a given tree
 during a recursive inorder traversal

7

37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree:
Nonrecursive Inorder Traversal

• An iterative method
and an explicit stack
can mimic the actions
of a return from a
recursive call to
inorder

Figure 10-16

Traversing (a) the left and (b) the right subtrees of 20

38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Copying a Binary Tree

•To copy a tree
–Traverse it in preorder
–Insert each item visited into a new tree
–Use in copy constructor

•To deallocate a tree
–Traverse in postorder
–Delete each node visited
–“Visit” follows deallocation of a node’s
subtrees
–Use in destructor

39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Binary Search Tree

• The ADT binary tree is not suitable when you
need to search for a particular item

• The ADT binary search tree is suitable for this
task

• Record
– A group of related items, called fields, that are not

necessarily of the same data type
• Field

– A data element within a record

40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Binary Search Tree

• A data item in a binary search tree has a specially
designated search key
– A search key is the part of a record that identifies it

within a collection of records
• KeyedItem class

– Contains the search key as a data field and a method for
accessing the search key

– Prevents modification of the search-key value once an
item is created

• Has only a constructor for initializing the search key

41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Binary Search Tree

Figure 10-18 UML diagram for the class BinarySearchTree

42Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree:
Search Algorithm
• Search the binary search tree bst for the

item whose search key is searchKey
search(in bst:BinarySearchTree,

 in searchKey:KeyType)
if (bst is empty)
 Item not found
else if (searchKey equals root item)
 Item is found
else if(searchKey < root item)
 search(bst’s left subtree,searchKey)
else // searchKey > root item
 search(bst’s right subtree,searchKey)

8

43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree: Insertion

• Insert newItem into the binary search tree to
which treePtr points
insertItem(in treePtr:TreeNodePtr,
 in newItem:TreeItemType)
 if (Search stops at n’s left subtree)
 Make n’s leftChildPtr point to newItem
 else

 Make n’s rightChildPtr point to newItem

44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree: Insertion

Figure 10-23

 (a) Insertion into an empty tree;

 (b) search terminates at a leaf;

 (c) insertion at a leaf

45Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree: Deletion

• Three possible cases for deleting the item in
node N
– N is a leaf

• Set the pointer in N’s parent to NULL
– N has only one child

• Let N’s parent adopt N’s child
– N has two children

46Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree: Deletion

• Deleting the item in node N when N has two
children (continued)
– Locate another node M that is easier to delete

• M is the leftmost node in N’s right subtree
• M will have no more than one child
• M’s search key is called the inorder successor of N’s

search key
– Copy the item that is in M to N
– Remove the node M from the tree

47Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT Binary Search Tree:
Retrieval and Traversal

• The retrieval operation can be implemented by
refining the search algorithm
– Return the item with the desired search key if it exists
– Otherwise, throw TreeException

• Traversals for a binary search tree are the same as
the traversals for a binary tree

• Theorem 10-1
The inorder traversal of a binary search tree T will visit
its nodes in sorted search-key order

48Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Height of a Binary Tree

• Theorem 10-2
– A full binary tree of height h ≥ 0 has 2h – 1 nodes

• Theorem 10-3
– The maximum number of nodes that a binary tree of

height h can have is 2h – 1
• Theorem 10-4

– The minimum height of a binary tree with n nodes is ⎡
log2(n+1)⎤

– Complete trees and full trees have minimum height
• The maximum height of a binary tree with n nodes

is n

9

49Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Height of a Binary Tree

Figure 10-32 Counting the nodes in a full binary tree of height h

50Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Efficiency of Binary Search
Tree Operations

• The maximum number of comparisons required
by any b. s. t. operation is the number of nodes
along the longest path from root to a leaf—that is,
the tree’s height

• The order in which insertion and deletion
operations are performed on a binary search tree
affects its height

• Insertion in random order produces a binary
search tree that has near-minimum height

51Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Efficiency of Binary Search
Tree Operations

Figure 10-34 The order of the retrieval, insertion, deletion, and traversal operations for

the pointer-based implementation of the ADT binary search tree

52Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applications

• Treesort
– Uses the ADT binary search tree to sort an

array of records into search-key order
• Average case: O(n * log n)
• Worst case: O(n2)

53Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applications

• Algorithms for saving a binary search tree
– Saving a binary search tree and then restoring it

to its original shape
• Uses preorder traversal to save the tree to a file

– Saving a binary search tree and then restoring it
to a balanced shape

• Uses inorder traversal to save the tree to a file
• To restore, need the number of nodes in the tree

54Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The STL Search Algorithms

• binary_search
– Returns true if a specified value appears in the

given sorted range
• lower_bound; upper_bound

– Returns an iterator to the first (one past the last)
occurrence of a value

• equal_range
– Returns a pair of iterators: One is to the first

occurrence of a value in the given sorted range,
the other is to one past the last occurrence

10

55Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

n-ary Trees

• An n-ary tree is a general tree whose nodes
can have no more than n children each
– A generalization of a binary tree

Figure 10-38 A general tree Figure 10-41

 An implementation of the n-ary tree in Figure 10-38
56Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

n-ary Trees
• A binary tree can represent an n-ary tree

Figure 10-39 Another implementation of the tree in Figure 10-38 Figure 10-40 The binary tree

that Figure 10-39 represents

57Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Binary trees provide a hierarchical organization of
data

• The implementation of a binary tree is usually
pointer-based

• If the binary tree is complete, an efficient array-
based implementation is possible

• Traversing a tree to “visit”—that is, do something
to or with—each node is useful

• You pass a client-defined “visit” function to the
traversal operation to customize its effect on the
items in the tree

58Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• The binary search tree allows you to use a
binary search-like algorithm to search for an
item having a specified value

• Binary search trees come in many shapes
– The height of a binary search tree with n nodes

can range from a minimum of ⎡log2(n + 1)⎤ to a
maximum of n

– The shape of a binary search tree determines
the efficiency of its operations

59Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• An inorder traversal of a binary search tree
visits the tree’s nodes in sorted search-key
order

• The treesort algorithm efficiently sorts an
array by using the binary search tree’s
insertion and traversal operations

60Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Saving a binary search tree to a file while
performing
– An inorder traversal enables you to restore the

tree as a binary search tree of minimum height
– A preorder traversal enables you to restore the

tree to its original form

