

President

vp vp
Manufacturing Personnel

Director
Media Relations Joseph

Caroline

root
left subtree
i

postorderTraverse()

(a) Preorder: 60, 20, 10, (b) Inorder: 10, 20, 30, (0) Postorder: 10, 30, 50,
40,30, 50,70 40, 50, 60, 70 40, 20, 70, 60

(Numbers beside nodes indicate traversal order.)

leftchild rightchild

1 2

3

Array-based Representation of a
Complete Binary Tree

0 Jane
1 Bob

Alan

Ellen

Nancy

Figure 10-12 Level-by-level

Figure 10-13 An array-based implementation

numbering of a complete binary tree of the complete tree in Figure 10-12

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

root.

leftchildptr [rightchildper

/ | \ ...I/ | \

Figure 10-14 A pointer-based implementation of a binary tree

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

» TreeException and TreeNode classes

* BinaryTree class

— Several constructors, including a

* Protected constructor whose argument is a pointer to
a root node; prohibits client access

* Copy constructor that calls a private function to
copy each node during a traversal of the tree

— Destructor

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree

* BinaryTree class (continued)
— 1sEmpty, getRootData, setRootData
—attachLeft,attachRight
—attachLeftSubtree,attachRightSubtree
—detachLeftSubtree,detachRightSubtree
—getLeftSubtree, getRightSubtree
— Overloaded assignment operator

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree:
Tree Traversals

e BinaryTree class (continued)

— Public methods for traversals so that visiting a node remains
on the client’s side of the wall

void inorderTraverse (FunctionType visit);

typedef void (*FunctionType) (TreeltemType&

item) ;

— Protected methods, such as inorder, that enable the
recursion
void inorder (TreeNode *treeptr,

FunctionType visit);

- inorderTraverse calls inorder, passing it a node
pointer and the client-defined function visit

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-based ADT Binary Tree:
Recursive Inorder Traversal

(The notation —60 means "a pointer to the node containing 60.")

UL
-1 10 =10
- S| =20
—60 | visit 10 [260] [=60
7 8

Visit 20
B 6 10

treePtratStep |

treePtrat Steps 2, 9, and 10

treeptratsieps3,5,6,and8 ————»(10) ()

treePtr is NULL at Steps 4 and 7

Figure 10-15 Contents of the implicit stack as « zee?tx progresses through a given tree
during a recursive inorder traversal

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Lot subvee of 20 has
been taversed_ Fop reerence
1010 fom stack, st 20

BinarySearchTree

root
left subtree
right subtree

createBinarySearchTree()
destroyBinarySearchTree()
isEmpty()
searchTreeInsert()
searchTreeDelete()
searchTreeRetrieve()
preorderTraverse()
inorderTraverse()
postorderTraverse()

e @) (D)

®
Right subiree of 20 has

been taversed Fop reerence
1040 from stack.

Height of a Binary Tree

Level Number of nodesat Number of nodes at this
this level and previous levels
1 1=2" 1=2'-1
2 2=2 3=2"-1
3 4=2 7=2°-1
4 8=2 15=2"-1
h 2" 2"-1

Figure 10-32 Counting the nodes in a full binary tree of height h

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

49

The Efficiency of Binary Search
Tree Operations

* The maximum number of comparisons required
by any b. s. t. operation is the number of nodes
along the longest path from root to a leaf—that is,
the tree’s height

* The order in which insertion and deletion
operations are performed on a binary search tree
affects its height

* Insertion in random order produces a binary
search tree that has near-minimum height

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Efficiency of Binary Search
Tree Operations

Operation Average case Worst case

Retrieval O(log n) 0O(n)
Insertion O(log n) O(n)
Deletion O(log n) O(n)
Traversal O(n) O(n)

Figure 10-34 The order of the retrieval, insertion, deletion, and traversal operations for

the pointer-based implementation of the ADT binary search tree

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applications

¢ Treesort

— Uses the ADT binary search tree to sort an
array of records into search-key order
 Average case: O(n * log n)
» Worst case: O(n?)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applications

* Algorithms for saving a binary search tree
— Saving a binary search tree and then restoring it
to its original shape
* Uses preorder traversal to save the tree to a file
— Saving a binary search tree and then restoring it
to a balanced shape
* Uses inorder traversal to save the tree to a file

¢ To restore, need the number of nodes in the tree

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The STL Search Algorithms

* binary_search
— Returns true if a specified value appears in the
given sorted range
* lower_bound; upper_bound
— Returns an iterator to the first (one past the last)
occurrence of a value
* equal_range
— Returns a pair of iterators: One is to the first

occurrence of a value in the given sorted range,
the other is to one past the last occurrence

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

2 2t

N
i
N

[e

10

