
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 7:
Queues

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type Queue

• A queue
– New items enter at the back, or rear, of the

queue
– Items leave from the front of the queue
– First-in, first-out (FIFO) property

• The first item inserted into a queue is the first item
to leave

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type Queue

• Queues
– Are appropriate for many real-world situations

• Example: A line to buy a movie ticket
– Have applications in computer science

• Example: A request to print a document
– Simulation

• A study to see how to reduce the wait involved in an
application

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type Queue

• ADT queue operations
– Create an empty queue
– Destroy a queue
– Determine whether a queue is empty
– Add a new item to the queue
– Remove the item that was added earliest
– Retrieve the item that was added earliest

2

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type Queue

• Operation Contract for the ADT Queue
isEmpty():boolean {query}
enqueue(in newItem:QueueItemType)

 throw QueueException
 dequeue() throw QueueException

 dequeue(out queueFront:QueueItemType)
 throw QueueException

 getFront(out queueFront:QueueItemType) {query}
 throw QueueException

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type Queue

Figure 7-2 Some queue operations

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Reading a String of Characters

• A queue can retain characters in the order in
which they are typed
aQueue.createQueue()
while (not end of line)
{ Read a new character ch
 aQueue.enqueue(ch)

} // end while
• Once the characters are in a queue, the

system can process them as necessary

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recognizing Palindromes

• A palindrome
– A string of characters that reads the same from

left to right as its does from right to left
• To recognize a palindrome, you can use a

queue in conjunction with a stack
– A stack reverses the order of occurrences
– A queue preserves the order of occurrences

3

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recognizing Palindromes

• A nonrecursive recognition algorithm for
palindromes
– As you traverse the character string from left to

right, insert each character into both a queue
and a stack

– Compare the characters at the front of the
queue and the top of the stack

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recognizing Palindromes

Figure 7-3

The results of inserting a string into

both a queue and a stack

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementations of the ADT
Queue

• An array-based implementation
• Possible implementations of a pointer-based

queue
– A linear linked list with two external references

• A reference to the front
• A reference to the back

– A circular linked list with one external
reference

• A reference to the back

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation

Figure 7-4 A pointer-based implementation of a queue: (a) a linear linked list with two

external pointers; (b) a circular linear linked list with one external pointer

4

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation

Figure 7-7 Deleting an

item from a queue of

more than one item

Figure 7-6 Inserting an

item into an empty queue:

(a) before insertion;

(b) after insertion

Figure 7-5 Inserting

an item into a

nonempty queue

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

Figure 7-8

a) A naive array-based implementation of a queue; (b) rightward drift can cause the queue to

appear full

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

• A circular array
– Eliminates the problem of rightward drift
– BUT front and back cannot be used to

distinguish between queue-full and queue-
empty conditions

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

Figure 7-11

(a) front passes back when

the queue becomes empty;

(b) back catches up to front

when the queue becomes full

5

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

• To detect queue-full and queue-empty
conditions
– Keep a count of the queue items

• To initialize the queue, set
– front to 0
– back to MAX_QUEUE – 1
– count to 0

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

• Inserting into a queue
back = (back+1) % MAX_QUEUE;
items[back] = newItem;

++count;

• Deleting from a queue
front = (front+1) % MAX_QUEUE;
--count;

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

• Variations of the array-based
implementation

1. Use a flag isFull to distinguish between the full
and empty conditions

2. Declare MAX_QUEUE + 1 locations for the array
items, but use only MAX_QUEUE of them for
queue items

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation

Figure 7-12

A more efficient circular

implementation: (a) a full

queue; (b) an empty

queue

6

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Implementation That Uses the
ADT List

The front of the queue is at position 1 of the list;
The back of the queue is at the end of the list

Figure 7-13

An implementation that uses the ADT list

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Implementation That Uses the
ADT List

• aList enqueue()
aList.insert(aList.getLength()+1,
 newItem)

• dequeue()
aList.remove(1)

• getFront(queueFront)
aList.retrieve(1, queueFront)

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Standard Template Library
Class queue

• Some operations in the STL queue
– Enqueue and dequeue operations are called
push and pop, respectively, as for a stack

– The back method returns a reference to the
last item

– The size method returns the number of items
• An adaptor container

– Implemented using a more basic container type
– The default queue container class is deque

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Implementations

• Fixed size versus dynamic size
– A statically allocated array-based implementation

• Fixed-size queue that can get full
• Prevents the enqueue operation from adding an item to

the queue, if the array is full
– A dynamically allocated array-based

implementation or a pointer-based implementation
• No size restriction on the queue

7

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Implementations

• A pointer-based implementation vs. one that
uses a pointer-based implementation of the
ADT list
– Pointer-based implementation is more efficient
– ADT list approach reuses an already

implemented class
• Much simpler to write
• Saves programming time

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Summary of Position-Oriented
ADTs

• Position-oriented ADTs
– List
– Stack
– Queue

• Stacks and queues
– Only the end positions can be accessed

• Lists
– All positions can be accessed

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Summary of Position-Oriented
ADTs

• Stacks and queues are very similar
– Operations of stacks and queues can be paired

off as
•createStack and createQueue
• Stack isEmpty and queue isEmpty
•push and enqueue
•pop and dequeue
• Stack getTop and queue getFront

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Summary of Position-Oriented
ADTs

• ADT list operations generalize stack and
queue operations
– getLength

– insert
– remove

– retrieve

8

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

• Simulation
– A technique for modeling the behavior of both

natural and human-made systems
– Goal

• Generate statistics that summarize the performance
of an existing system

• Predict the performance of a proposed system
– Example

• A simulation of the behavior of a bank

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

Figure 7-14 A bank line at

time (a) 0; (b) 12; (c) 20;

(d) 38

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

• A time-driven simulation
– Simulated time advances by one time unit
– The time of an event is determined randomly

and compared with the simulated time

32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

• An event-driven simulation
– Simulated time advances to time of next event
– Events are generated by using a mathematical

model based on statistics and probability

9

33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

• The bank simulation is concerned with
– Arrival events

• External events: the input file specifies the times at
which the arrival events occur

– Departure events
• Internal events: the simulation determines the times

at which the departure events occur

34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

• Bank simulation is event-driven and uses an
event list
– Keeps track of arrival and departure events that

will occur but have not occurred yet
– Contains at most one arrival event and one

departure event

35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Simulation

Figure 7-16 A partial trace of the bank simulation for the data 20 5, 22 4, 23 2, 30 3

36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• The definition of the queue operations gives
the ADT queue first-in, first-out (FIFO)
behavior

• A pointer-based implementation of a queue
uses either
– A circular linked list
– A linear linked list with both a head pointer and

a tail pointer

10

37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• A circular array eliminates the problem of
rightward drift in an array-based
implementation

• To distinguish between the queue-full and
queue-empty conditions in a circular array
– Count the number of items in the queue
– Use an isFull flag
– Leave one array location empty

38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Simulations
– In a time-driven simulation

• Time advances by one time unit
– In an event-driven simulation

• Time advances to the time of the next event
– To implement an event-driven simulation, you

maintain an event list that contains events that
have not yet occurred

