

Operation

aQueue.createQueue ()
aQueue. enqueue (5)

aQueue . enqueue (2)

aQueue . enqueue (7)
aQueue.getFront (queueFront)
aQueue . dequeue (queueFront)
aQueue . dequeue (queueFront)

Queue after operation

¢7 front

(queueFront is 5)

(queueFront is 5,

)

String: abcbd

front back

[)
o LAt At g

1. newPtr-snext = NULL;
2. backPtr->next = newptr;
3. backPtr = newptr;

©
front

backPtr mewPtr (points to new node)

(b)
© frontPtr = newPtr;

backetr = newptr; Eront

frontptr

backptr newptr backptr newptr

. tempPtr = fronmcPtr;

. frontBtr = frontPtr-snext;
. tempPtr->next = NULL;

. delete tempPtr;

back

back

items

MAX_QUEUE - 1 — Array indexes

Queve with single item ——» Delete item—queue becomes emp

MAX_QUEUE -1 0

MAX_QUEUE -1 0

front

Queue with single empty slot —————» Insert 9—queue becomes full
Q

i ’sﬁe. _enm
front 4 T3 front AT 3

back back

An Implementation That Uses the
ADT List

The front of the queue is at position 1 of the list;
The back of the queue is at the end of the list

Front of queue —+ +— Back of queue

2417

Position in list—»1 2 3 4

Figure 7-13
An implementation that uses the ADT list

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. zl

An Implementation That Uses the
ADT List

* alist enqueue ()
alist.insert (alist.getLength () +1,
newltem)
* dequeue ()
aList.remove (1)
e getFront (queueFront)
alist.retrieve(l, queueFront)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Standard Template Library
Class queue

* Some operations in the STL queue

— Enqueue and dequeue operations are called
push and pop, respectively, as for a stack

— The back method returns a reference to the
last item

— The size method returns the number of items
e An adaptor container

— Implemented using a more basic container type

— The default queue container class is deque

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

Comparing Implementations

* Fixed size versus dynamic size
— A statically allocated array-based implementation

* Fixed-size queue that can get full

* Prevents the enqueue operation from adding an item to
the queue, if the array is full

— A dynamically allocated array-based
implementation or a pointer-based implementation

* No size restriction on the queue

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Action bankQueue (front to back) anEventList (beginning to end

Read file, place event in anEventList (empty) A205
Update anEventList and bankQueue:

Customer 1 enters bank

Customer 1 begins transaction,
create departure event

Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 2 enters bank
Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 3 enters bank
Read file, place event in anEventList

Update anEventList and bankQueue:
Customer 1 departs
Customer 2 begins transaction,

create departure event

10

