
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 6:
Stacks

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Abstract Data Type

• Specifications of an abstract data type for a
particular problem
– Can emerge during the design of the problem’s

solution
– Examples

•readAndCorrect algorithm
•displayBackward algorithm

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Developing an ADT During the
Design of a Solution

• ADT stack operations
– Create an empty stack
– Destroy a stack
– Determine whether a stack is empty
– Add a new item to the stack
– Remove the item that was added most recently
– Retrieve the item that was added most recently

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Developing an ADT During the
Design of a Solution

Figure 6-1

Stack of cafeteria dishes

• A stack
– Last-in, first-out (LIFO)

property
• The last item placed on the

stack will be the first item
removed

– Analogy
• A stack of dishes in a

cafeteria

2

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Refining the Definition of the ADT
Stack

• Operation Contract for the ADT Stack
isEmpty():boolean {query}
push(in newItem:StackItemType)

 throw StackException
 pop() throw StackException

 pop(out stackTop:StackItemType)
 throw StackException

 getTop(out stackTop:StackItemType) {query}
 throw StackException

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Using the ADT Stack in a Solution

• A program can use a stack independently of
the stack’s implementation
– displayBackward and
readAndCorrect algorithms can be refined
using stack operations

• Use axioms to define an ADT stack
formally
– Example: Specify that the last item inserted is

the first item to be removed
(aStack.push(newItem)).pop()= aStack

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Checking for Balanced Braces

• A stack can be used to verify whether a
program contains balanced braces
– An example of balanced braces

abc{defg{ijk}{l{mn}}op}qr
– An example of unbalanced braces

abc{def}}{ghij{kl}m

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Checking for Balanced Braces

• Requirements for balanced braces
– Each time you encounter a “}”, it matches an

already encountered “{”
– When you reach the end of the string, you have

matched each “{”

3

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Checking for Balanced Braces

Figure 6-3

Traces of the algorithm that checks for balanced braces

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recognizing Strings in a
Language

• L = {w$w’ : w is a possibly empty string of
 characters other than $,
 w’ = reverse(w) }
• A solution using a stack

– Traverse the first half of the string, pushing
each character onto a stack

– Once you reach the $, for each character in the
second half of the string, match a popped
character off the stack

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementations of the ADT Stack

• The ADT stack can be implemented using
– An array
– A linked list
– The ADT list

• All three implementations use a
StackException class to handle
possible exceptions

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementations of the ADT Stack

Figure 6-4

Implementations of the ADT stack that use (a) an array; (b) a linked list; (c) an ADT list

4

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based Implementation of
the ADT Stack

• Private data fields
– An array of items of type StackItemType
– The index top to the top item

• Compiler-generated destructor and copy
constructor

Figure 6-5

An array-based implementation

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation
of the ADT Stack

• A pointer-based implementation
– Enables the stack to grow and shrink

dynamically
• topPtr is a pointer to the head

of a linked list of items
• A copy constructor and destructor

must be supplied
Figure 6-6 A pointer-based implementation

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Implementation That Uses the
ADT List

• The ADT list can represent the items in a stack
• Let the item in position 1 of the list be the top

– push(newItem)
• insert(1, newItem)

– pop()
• remove(1)

– getTop(stackTop)
• retrieve(1, stackTop)

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Implementation That Uses the
ADT List

Figure 6-7

An implementation that uses the ADT list

5

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Implementations

• Fixed size versus dynamic size
– A statically allocated array-based implementation

• Fixed-size stack that can get full
• Prevents the push operation from adding an item to the

stack, if the array is full
– A dynamically allocated array-based

implementation or a pointer-based implementation
• No size restriction on the stack

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Implementations

• A pointer-based implementation vs. one that
uses a pointer-based implementation of the
ADT list
– Pointer-based implementation is more efficient
– ADT list approach reuses an already

implemented class
• Much simpler to write
• Saves programming time

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The STL Class stack

• Provides a size function
• Has two data type parameters

– T, the data type for the stack items
– Container, the container class that the STL uses in

its implementation of the stack
• Uses the keyword explicit in the constructor’s

declaration to prevent use of the assignment
operator to invoke the constructor

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application:
Algebraic Expressions

• When the ADT stack is used to solve a
problem, the use of the ADT’s operations
should not depend on its implementation

• To evaluate an infix expression
– Convert the infix expression to postfix form
– Evaluate the postfix expression

6

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluating Postfix Expressions

• A postfix calculator
– When an operand is entered, the calculator

• Pushes it onto a stack
– When an operator is entered, the calculator

• Applies it to the top two operands of the stack
• Pops the operands from the stack
• Pushes the result of the operation onto the stack

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluating Postfix Expressions

Figure 6-8

The action of a postfix calculator when evaluating the expression 2 * (3 + 4)

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluating Postfix Expressions

• To evaluate a postfix expression entered as
a string of characters
– Use the same steps as a postfix calculator
– Simplifying assumptions

• The string is a syntactically correct postfix
expression

• No unary operators are present
• No exponentiation operators are present
• Operands are single lowercase letters that represent

integer values

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Converting Infix Expressions to
Equivalent Postfix Expressions

• You can evaluate an infix expression by first
converting it into an equivalent postfix
expression

• Facts about converting from infix to postfix
– Operands always stay in the same order with

respect to one another
– An operator will move only “to the right” with

respect to the operands
– All parentheses are removed

7

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Converting Infix Expressions to
Equivalent Postfix Expressions

• Steps as you process the infix expression:
– Append an operand to the end of an initially empty

string postfixExpr
– Push (onto a stack
– Push an operator onto the stack, if stack is empty;

otherwise pop operators and append them to
postfixExpr as long as they have a precedence >=
that of the operator in the infix expression

– At), pop operators from stack and append them to
postfixExpr until (is popped

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Converting Infix Expressions to
Equivalent Postfix Expressions

Figure 6-9

A trace of the algorithm that converts the infix expression a - (b + c * d) / e to postfix form

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: A Search Problem

• High Planes Airline Company (HPAir)
– For each customer request, indicate whether a

sequence of HPAir flights exists from the origin
city to the destination city

• The flight map for HPAir is a graph
– Adjacent vertices are two vertices that are

joined by an edge
– A directed path is a sequence of directed edges

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: A Search Problem

Figure 6-10

Flight map for HPAir

8

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Nonrecursive Solution That
Uses a Stack

• The solution performs an exhaustive search
– Beginning at the origin city, the solution will

try every possible sequence of flights until
either

• It finds a sequence that gets to the destination city
• It determines that no such sequence exists

• Backtracking can be used to recover from
choosing a wrong city

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Nonrecursive Solution That
Uses a Stack

Figure 6-13

A trace of the search algorithm, given the flight map in Figure 6-10

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Solution

• Possible outcomes of the recursive search
strategy
– You eventually reach the destination city and

can conclude that it is possible to fly from the
origin to the destination

– You reach a city C from which there are no
departing flights

– You go around in circles

32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Solution

• A refined recursive search strategy
+searchR(in originCity:City,
 in destinationCity:City):boolean
 Mark originCity as visited
 if (originCity is destinationCity)
 Terminate -- the destination is reached

 else
 for (each unvisited city C adjacent to
 originCity)
 searchR(C, destinationCity)

9

33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Relationship Between Stacks
and Recursion

• Typically, stacks are used by compilers to
implement recursive methods
– During execution, each recursive call generates

an activation record that is pushed onto a stack
• Stacks can be used to implement a

nonrecursive version of a recursive
algorithm

34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• ADT stack operations have a last-in, first-
out (LIFO) behavior

• Stack applications
– Algorithms that operate on algebraic

expressions
– Flight maps

• A strong relationship exists between
recursion and stacks

