
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 4:
Linked Lists

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Preliminaries
• Options for implementing an ADT List

– Array has a fixed size
• Data must be shifted during insertions and deletions

– Linked list is able to grow in size as needed
• Does not require the shifting of items during

insertions and deletions

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Preliminaries

Figure 4-1 (a) A linked list of integers; (b) insertion; (c) deletion

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointers
• A pointer contains the location, or address in memory, of a

memory cell
– Declaration of an integer pointer variable p

int *p;
• Initially undefined, but not NULL
• Static allocation

Figure 4-2 A pointer to an integer

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointers
• The expression *p represents the memory cell to

which p points
• To place the address of a variable into a pointer

variable, you can use
– The address-of operator &
 p = &x;
– The new operator
p = new int;

• Dynamic allocation of a memory cell that can contain an
integer

• If the operator new cannot allocate memory, it throws the
exception std::bad_alloc (in the <new> header)

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointers
• The delete operator returns dynamically

allocated memory to the system for reuse,
and leaves the variable’s contents undefined
 delete p;
– A pointer to a deallocated memory (*p) cell is

possible and dangerous
 p = NULL; // safeguard

2

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointers

Figure 4-3 (a) Declaring pointer variables; (b) pointing to statically allocated memory; (c) assigning a value;

(d) allocating memory dynamically; (e) assigning a value

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointers

Figure 4-3 continued

(f) copying a pointer;

(g) allocating memory dynamically and

assigning a value;

(h) assigning NULL to a pointer variable;

(i) deallocating memory

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Dynamic Allocation of Arrays
• You can use the new operator to allocate an array

dynamically
 int arraySize = 50;
 double *anArray = new double[arraySize];

• An array name is a pointer to the array’s first
element

• The size of a dynamically allocated array can be
increased
double *oldArray = anArray;
anArray = new double[2*arraySize];

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-Based Linked Lists
• A node in a linked list is usually a struct

struct Node
{ int item
 Node *next;
}; // end Node

• The head pointer points to the first node in a
linked list

Figure 4-6 A node

Figure 4-7 A head pointer to a list

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-Based Linked Lists

• If head is NULL, the linked list is empty

• A node is dynamically allocated
Node *p; // pointer to node
p = new Node; // allocate node

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Pointer-Based Linked Lists

• Executing the statement
head = new Node

before
head = NULL

will result in a lost cell

Figure 4-8 A lost cell

3

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Displaying the Contents of a
Linked List

• Reference a node member with the -> operator
p->item

• A traverse operation visits each node in the
linked list
– A pointer variable cur keeps track of the current

node
for (Node *cur = head; cur != NULL;

 cur = cur->next)
 cout << cur->item << endl;

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Displaying the Contents of a
Linked List

Figure 4-9

The effect of the assignment cur = cur->next

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

• Deleting an interior node
prev->next = cur->next;

Figure 4-10 Deleting a node from a linked list

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

Figure 4-11 Deleting the first node

• Deleting the first node
head = head->next;

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

Return deleted node to system
cur->next = NULL;
delete cur;
cur = NULL;

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List
• To insert a node between two nodes

newPtr->next = cur;

prev->next = newPtr;

Figure 4-12

Inserting a new node into a linked list

4

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List
• To insert a node at the beginning of a linked

list
newPtr->next = head;
head = newPtr;

Figure 4-13

Inserting at the beginning of a linked list

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List
• Inserting at the end of a linked list is not a

special case if cur is NULL
newPtr->next = cur;
prev->next = newPtr;

Figure 4-14

Inserting at the end of a linked list

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List

• Finding the point of insertion or deletion for a
sorted linked list of objects

 Node *prev, *cur;
 for (prev = NULL, cur = head;

 (cur != NULL) && (newValue > cur->item);

 prev = cur, cur = cur->next);

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation
of the ADT List

Figure 4-17 A pointer-based implementation of a linked list

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation
of the ADT List

• Public methods
– isEmpty
– getLength
– insert
– remove
– retrieve

• Private method
– find

• Private data members
– head

– size

• Local variables to
methods
– cur

– prev

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Constructors and Destructors

• Default constructor initializes size and
head

• A destructor is required for dynamically
allocated memory
List::~List()

{

 while (!isEmpty())
 remove(1);

} // end destructor

5

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Constructors and Destructors

• Copy constructor creates a deep copy
– Copies size, head, and the linked list
– The copy of head points to the copied linked list

• In contrast, a shallow copy
– Copies size and head
– The copy of head points to the original linked list

• If you omit a copy constructor, the compiler
generates one
– But it is only sufficient for implementations that use

statically allocated arrays

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Shallow Copy vs. Deep Copy

Figure 4-18 Copies of the linked list in Figure 4-17; (a) a shallow copy; (b) a deep copy

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Array-Based and
Pointer-Based Implementations

• Size
– Increasing the size of a resizable array can

waste storage and time
– Linked list grows and shrinks as necessary

• Storage requirements
– Array-based implementation requires less

memory than a pointer-based one for each item
in the ADT

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Array-Based and
Pointer-Based Implementations

• Retrieval
– The time to access the ith item

• Array-based: Constant (independent of i)
• Pointer-based: Depends on i

• Insertion and deletion
– Array-based: Requires shifting of data
– Pointer-based: Requires a traversal

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Saving and Restoring a Linked
List by Using a File

• Use an external file to preserve the list
between runs of a program

• Write only data to a file, not pointers
• Recreate the list from the file by placing

each item at the end of the linked list
– Use a tail pointer to facilitate adding nodes to

the end of the linked list
– Treat the first insertion as a special case by

setting the tail to head

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Passing a Linked List to a Method

• A method with access to a linked list’s
head pointer has access to the entire list

• Pass the head pointer to a method as a
reference argument
– Enables method to change value of the head

pointer itself (value argument would not)

Figure 4-22 A head pointer as a value argument

6

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Processing Linked Lists
Recursively

• Recursive strategy to display a list
– Write the first item in the list
– Write the rest of the list (a smaller problem)

• Recursive strategies to display a list
backward
– First strategy

• Write the last item in the list
• Write the list minus its last item backward

32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Processing Linked Lists
Recursively

– Second strategy
• Write the list minus its first item backward
• Write the first item in the list

• Recursive view of a sorted linked list
– The linked list to which head points is a sorted list if

• head is NULL or
• head->next is NULL or
• head->item < head->next->item, and
head->next points to a sorted linked list

33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Objects as Linked List Data

• Data in a node of a linked list can be an
instance of a class
typedef ClassName ItemType;
struct Node
{ ItemType item;
 Node *next;

}; //end struct
Node *head;

34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Circular Linked Lists

• Last node points to the first node
• Every node has a successor
• No node in a circular linked list contains NULL

Figure 4-25 A circular linked list

35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Circular Linked Lists
• Access to last node requires a traversal
• Make external pointer point to last node instead of first

node
– Can access both first and last nodes without a traversal

Figure 4-26 A circular linked list with an external pointer to the last node

36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Dummy Head Nodes

• Dummy head node
– Always present, even when the linked list is

empty
– Insertion and deletion algorithms initialize prev

to point to the dummy head node, rather than to
NULL

• Eliminates special case

Figure 4-27 A dummy head node

7

37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

• Each node points to both its predecessor and
its successor
– precede pointer and next pointer
– Insertions/deletions more involved than for a

singly linked list
– Often has a dummy head node
– Often circular to eliminate special cases

38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

• Circular doubly linked list with dummy
head node
– precede pointer of the dummy head node

points to the last node
– next pointer of the last node points to the

dummy head node
– No special cases for insertions and deletions

39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

Figure 4-29 (a) A circular doubly linked list with a dummy head node

 (b) An empty list with a dummy head node

40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

• To delete the node to which cur points
 (cur->precede)->next = cur->next;
 (cur->next)->precede = cur->precede;

• To insert a new node pointed to by newPtr
before the node pointed to by cur
 newPtr->next = cur;
 newPtr->precede = cur->precede;
 cur->precede = newPtr;
 newPtr->precede->next = newPtr;

41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Maintaining an
Inventory
• Operations on the inventory

– List the inventory in alphabetical order by title
(L command)

– Find the inventory item associated with title
(I, M, D, O, and S commands)

– Replace the inventory item associated with a
title (M, D, R, and S commands)

– Insert new inventory items (A and D
commands)

42Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The C++ Standard Template
Library

• The STL contains class templates for some
common ADTs, including the list class

• The STL provides support for predefined ADTs
through three basic items
– Containers

• Objects that hold other objects

– Algorithms
• That act on containers

– Iterators
• Provide a way to cycle through the contents of a container

8

43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• The C++ new and delete operators enable

memory to be dynamically allocated and recycled
• Each pointer in a linked list is a pointer to the next

node in the list
• Algorithms for insertions and deletions in a linked

list involve traversing the list and performing
pointer changes
– Use the operator new to allocate a new node and the

operator delete to deallocate a node

44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• Special cases

– Inserting a node at the beginning of a linked list
– Deleting the first node of a linked list

• Array-based lists use an implicit ordering scheme;
pointer-based lists use an explicit ordering scheme
– Pointer-based requires memory to represent pointers

• Arrays enable direct access of an element;
Linked lists require a traversal

45Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• Inserting an item into a linked list does not shift

data, an important advantage over array-based
implementations

• A class that allocates memory dynamically needs an
explicit copy constructor and destructor

• If you omit a copy constructor or destructor, the
compiler generates one
– But such methods are only sufficient for implementations

that use statically allocated arrays

46Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• You can increase the size of a linked list one node
at a time more efficiently that you can increase the
size of an array by one location
– Increasing the size of an array involves copying

• A binary search of a linked list is impractical,
because you cannot quickly locate its middle item

• You can save the data in a linked list in a file, and
later restore the list

47Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• Recursion can be used to perform

operations on a linked list
– Eliminates special cases and trailing pointer

• Recursive insertion into a sorted linked list
considers smaller and smaller sorted lists
until the actual insertion occurs at the
beginning of one of them

48Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• In a circular linked list, the last node points

to the first node
– The external pointer points to the last node

• A dummy head node eliminates the special
cases for insertion into and deletion from
the beginning of a linked list

9

49Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• In a doubly linked list, each node points to

both its successor and predecessor
– Enables traversal in two directions
– Insertions/deletions are more involved than

with a singly linked list
• Both a dummy head node and a circular

organization eliminate special cases

50Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• A class template enables you to defer choosing

some data-types within a class until you use it
• The Standard Template Library (STL) contains

class templates for some common ADTs
• A container is an object that holds other objects
• An iterator cycles through the contents of a

container

