Old value

Cl
20 45 51

Look in location 342 for what you want

Inserted item Memory cells

. [="]
1A A A =]

» Addresses—» 340 341 342 343
Deleted item

(a) int *p,
int

(@) q = new int;
*q = 8;

L[]

item next

0 I e N I e (1 P

head item next item next item next

1 J [

*head head
new Node; head = NULL;

Displaying the Contents of a
Linked List

» Reference a node member with the -> operator

p->item
* A traverse operation visits each node in the
linked list
— A pointer variable cur keeps track of the current
node
for (Node *cur = head; cur != NULL;
cur = cur->next)

cout << cur->item << endl;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Displaying the Contents of a
Linked List

Before After

o] o=

cur cur

Figure 4-9

The effect of the assignment cur = cur->next

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

e Deleting an interior node

prev->next = cur->next;

Figure 4-10 Deleting a node from a linked list

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

¢ Deleting the first node
head = head->next;

? =]

head

1

prev cur

Figure 4-11 Deleting the first node

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Deleting a Specified Node from a
Linked List

Return deleted node to system
cur->next = NULL;
delete cur;
cur = NULL;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List

e To insert a node between two nodes

newPtr->next = cur;

prev->next = newPtr;

e 4’

Figure 4-12

Inserting a new node into a linked list
newPtr

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List

 To insert a node at the beginning of a linked
list
newPtr->next = head;
head = newPtr;

e — LT

cur
ﬁ Z Figure 4-13
prev

Inserting at the beginning of a linked list
newPtr

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List

* Inserting at the end of a linked list is not a
special case if cur is NULL

newPtr->next = cur;
prev->next = newPtr;
Formerly NULL
r
Figure 4-14 prev newptr
Inserting at the end of a linked list IZ

cur

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inserting a Node into a Specified
Position of a Linked List

* Finding the point of insertion or deletion for a
sorted linked list of objects
Node *prev, *cur;

for (prev = NULL, cur = head;
(cur != NULL) && (newValue > cur->item);

prev = cur, cur = cur->next);

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. el

A Pointer-Based Implementation
of the ADT List

size head

Figure 4-17 A pointer-based implementation of a linked list

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Pointer-Based Implementation
of the ADT List

¢ Public methods e Private data members

— isEmpty - head
—getLength _size
—insert .
* Local variables to

— remove

, methods
—retrieve

g — cur
¢ Private method

- find Threv

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. i

Constructors and Destructors

e Default constructor initializes size and
head

e A destructor is required for dynamically
allocated memory
List::~List ()
{
while (!isEmpty())
remove (1) ;

} // end destructor

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Constructors and Destructors

» Copy constructor creates a deep copy

— Copies size, head, and the linked list

— The copy of head points to the copied linked list
* In contrast, a shallow copy

— Copies size and head

— The copy of head points to the original linked list
* If you omit a copy constructor, the compiler

generates one

— But it is only sufficient for implementations that use
statically allocated arrays

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. 4

Shallow Copy vs. Deep Copy

'O AR

size head

Copy of Copy of
size head

-G

size head

B BRI B S

Copy of Copy of Copy of the linked list
size head

Figure 4-18 Copies of the linked list in Figure 4-17; () a shallow copy; (b) a deep copy

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Comparing Array-Based and
Pointer-Based Implementations

* Size
— Increasing the size of a resizable array can
waste storage and time
— Linked list grows and shrinks as necessary
e Storage requirements

— Array-based implementation requires less
memory than a pointer-based one for each item
in the ADT

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. 4t

Comparing Array-Based and
Pointer-Based Implementations

* Retrieval
— The time to access the i item
¢ Array-based: Constant (independent of i)
* Pointer-based: Depends on i
* Insertion and deletion
— Array-based: Requires shifting of data
— Pointer-based: Requires a traversal

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Saving and Restoring a Linked
List by Using a File

 Use an external file to preserve the list
between runs of a program
» Write only data to a file, not pointers
* Recreate the list from the file by placing
each item at the end of the linked list
— Use a tail pointer to facilitate adding nodes to
the end of the linked list
— Treat the first insertion as a special case by
setting the tail to head

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. A

Passing a Linked List to a Method

* A method with access to a linked list’s
head pointer has access to the entire list

* Pass the head pointer to a method as a
reference argument

— Enables method to change value of the head
pointer itself (value argument would not)

“Actual argument”
head

ERaE
headPtr
“Formal argument”

4

I3 -

Figure 4-22 A head pointer as a value argument

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Processing Linked Lists
Recursively

* Recursive strategy to display a list
— Write the first item in the list
— Write the rest of the list (a smaller problem)
* Recursive strategies to display a list
backward
— First strategy

* Write the last item in the list
* Write the list minus its last item backward

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

Objects as Linked List Data

¢ Data in a node of a linked list can be an

instance of a class

typedef ClassName ItemType;
struct Node

{ ItemType item;

Node *next;
}; //end struct
Node *head;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

Processing Linked Lists
Recursively

— Second strategy
* Write the list minus its first item backward
* Write the first item in the list

* Recursive view of a sorted linked list
— The linked list to which head points is a sorted list if
* head is NULL or
* head->next is NULL or
¢ head->item < head->next->item, and
head->next points to a sorted linked list

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. £2

Variations: Circular Linked Lists
 Last node points to the first node

» Every node has a successor
¢ No node in a circular linked list contains NULL

gl e e
L)

list

Figure 4-25 A circular linked list

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

Variations: Circular Linked Lists

* Access to last node requires a traversal

* Make external pointer point to last node instead of first
node

— Can access both first and last nodes without a traversal

list

Lo Lt LAt e 1y
L J

Figure 4-26 A circular linked list with an external pointer to the last node

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. B

Variations: Dummy Head Nodes

e Dummy head node
— Always present, even when the linked list is
empty
— Insertion and deletion algorithms initialize prev

to point to the dummy head node, rather than to
NULL

« Eliminates special case

e O I e R e e O e KN 4

head Dummy head node

Figure 4-27 A dummy head node

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

Variations: Doubly Linked Lists

 Each node points to both its predecessor and
its successor
- precede pointer and next pointer
— Insertions/deletions more involved than for a
singly linked list
— Often has a dummy head node
— Often circular to eliminate special cases

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

e Circular doubly linked list with dummy
head node
— precede pointer of the dummy head node
points to the last node
— next pointer of the last node points to the
dummy head node
— No special cases for insertions and deletions

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

(a) 1istHead

i
e

Dummy head node

Jones

]
]

sakeyl....|-|—;_|_

i G A e
(J

(b) 1istHead

Figure 4-29 (a) A circular doubly linked list with a dummy head node
(b) An empty list with a dummy head node

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Variations: Doubly Linked Lists

* To delete the node to which cur points
(cur->precede) ->next = cur->next;
(cur->next) ->precede = cur->precede;

 To insert a new node pointed to by newPtr
before the node pointed to by cur
newPtr->next = cur;
newPtr->precede = cur->precede;
cur->precede = newPtr;
newPtr->precede->next = newPtr;

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Application: Maintaining an
Inventory

* Operations on the inventory

— List the inventory in alphabetical order by title
(L command)

— Find the inventory item associated with title
(I, M, D, O, and S commands)

— Replace the inventory item associated with a
title (M, D, R, and S commands)

— Insert new inventory items (A and D
commands)

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0. &

The C++ Standard Template
Library

» The STL contains class templates for some
common ADTs, including the 1ist class

* The STL provides support for predefined ADTs
through three basic items
— Containers
 Objects that hold other objects
— Algorithms
 That act on containers
— Iterators

* Provide a way to cycle through the contents of a container

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

