
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 3:
Data Abstraction: The Walls

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Modularity
– Keeps the complexity of a large program

manageable by systematically controlling the
interaction of its components

– Isolates errors
– Eliminates redundancies

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types
• Abstract data type (ADT)

– An ADT is composed of
• A collection of data
• A set of operations on that data

– Specifications of an ADT indicate
• What the ADT operations do, not how to implement

them
– Implementation of an ADT

• Includes choosing a particular data structure

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT vs Data Structure

• ADT
– Collection of data
– Set of operations on the data
– Example: list (we will define shortly)

• Data Structure
– Construct within programming language
– Stores a collection of data
– Example: array

2

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

Figure 3-4

A wall of ADT operations isolates a data structure from the program that uses it

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes

Figure 3-10

An object’s data and methods

are encapsulated

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes

• Each class definition is placed in a header
file
– Classname.h

• The implementation of a class’s methods
are placed in an implementation file
– Classname.cpp

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• Both an array and a list identify their items

by number
– Using an array to represent a list is a natural

choice
– Store a list’s items in an array items

• Distinguish between the list’s length and the
array’s size
– Keep track of the list’s length

3

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• Header file
/** @file ListA.h */
const int MAX_LIST = maximum-size-of-list;
typedef desired-type-of-list-item ListItemType;
class List
{
public:
 . . .
private:
 ListItemType items[MAX_LIST];
 int size;
} // end List

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List

• A list’s kth item is stored in items[k-1]

Figure 3-11 An array-based implementation of the ADT list

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List

• To insert an item, make room in the array

Figure 3-12 Shifting items for insertion at position 3

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• To delete an item, remove gap in array

Figure 3-13 (a) Deletion causes a gap; (b) fill gap by shifting

4

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• Exception
– A mechanism for handling an error during

execution
– A function can indicate that an error has

occurred by throwing an exception
– The code that deals with the exception is said to

handle it
• Uses a try block and catch blocks

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• try block
– Place a statement that might throw an exception

within a try block
try
{
 statement(s);
}

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• catch block
– Deals with an exception
catch (ExceptionClass identifier)
{
 statement(s);
}

• Write a catch block for each type of
exception handled

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• When a statement in a try block causes an
exception
– Rest of try block is ignored

• Destructors of objects local to the block are called
– Control passes to catch block corresponding

to the exception
– After a catch block executes, control passes

to statement after last catch block associated
with the try block

5

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• Throwing exceptions
– A throw statement throws an exception

throw ExceptionClass(stringArgument);
– Methods that throw an exception have a throw clause
 void myMethod(int x) throw(MyException)
 {
 if (. . .)
 throw MyException(“MyException: …”);
 . . .

 } // end myMethod

• You can use an exception class in the C++
Standard Library or define your own

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions

• We define two exception classes
#include <stdexcept>
#include <string>
using namespace std;
class ListIndexOutOfRangeException :
 public out_of_range
{
public:
 ListIndexOutOfRangeException(const string &
 message = “”)

 :
out_of_range(message.c_str())

{}
}; // end ListException

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions

#include <stdexcept>
#include <string>
using namespace std;
class ListException : public logic_error
{
public:
 ListException(const string & message = “”)

 : logic_error(message.c_str())
{}

}; // end ListException

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions
/** @file ListAexcept.h */
#include “ListException.h”
#include “ListIndexOutOfRangeException.h”
 . . .
class List
{
public:
 . . .
 void insert(int index,
 const ListItemType& newItem)
 throw(ListIndexOutOfRangeException,
 ListException);
 . . .
} // end List

6

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions

/** @file ListAexcept.cpp */
void List::insert(int index,
 const ListItemType& newItem)
 throw(ListIndexOutOfRangeException,
 ListException);
{
 if (size > MAX_LIST)
 throw ListException(“ListException: ” +
 “List full on insert”);
 . . .
} // end insert

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Data abstraction controls the interaction
between a program and its data structures

• Abstract data type (ADT): a set of data-
management operations together with the
data values upon which they operate

• Axioms specify the behavior of ADT
operations in a formal mathematical study
of an ADT

• Define an ADT fully before making any
decisions about an implementation

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary
• Hide an ADT’s implementation by defining

the ADT as a C++ class
• An object encapsulates both data and

operations
• A class contains one destructor and at least

one constructor
• The compiler generates

– A default constructor if no constructor is
provided

– A destructor if none is provided

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Members of a class are private by default
– Data members are typically private
– Public methods can be provided to access them

• Define and implement a class within header and
implementation files

• Namespace: a mechanism to group classes,
functions, variables, types, and constants

• You can throw an exception if you detect an error
during program execution. You handle, or deal
with, an exception by using try and catch
blocks

