
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 3:
Data Abstraction: The Walls

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes

• Encapsulation combines an ADT’s data
with its operations to form an object
– An object is an instance of a class
– A class defines a new data type
– A class contains data members and methods

(member functions)
– By default, all members in a class are private

• But you can specify them as public
– Encapsulation hides implementation details

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes

Figure 3-10

An object’s data and methods

are encapsulated

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes

• Each class definition is placed in a header
file
– Classname.h

• The implementation of a class’s methods
are placed in an implementation file
– Classname.cpp

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: The header file
/** @file Sphere.h */
const double PI = 3.14159;
class Sphere
{
public:
 Sphere(); // Default constructor
 Sphere(double initialRadius); // Constructor
 void setRadius(double newRadius);
 double getRadius() const; // can’t change data members
 double getDiameter() const;
 double getCircumference() const;
 double getArea() const;
 double getVolume() const;
 void displayStatistics() const;
private:
 double theRadius; // data members should be private
}; // end Sphere

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: Constructors

• Constructors
– Create and initialize new instances of a class

• Invoked when you declare an instance of the class

– Have the same name as the class
– Have no return type, not even void

• A class can have several constructors
– A default constructor has no arguments
– The compiler will generate a default constructor if you

do not define any constructors

2

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: Constructors
• The implementation of a method qualifies its name

with the scope resolution operator ::
• The implementation of a constructor

– Sets data members to initial values
• Can use an initializer
 Sphere::Sphere() : theRadius(1.0)

 {

 } // end default constructor

– Cannot use return to return a value

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: Destructors

• Destructor
– Destroys an instance of an object when the

object’s lifetime ends
• Each class has one destructor

– For many classes, you can omit the destructor
– The compiler will generate a destructor if you

do not define one
• For now, we will use the compiler’s destructor

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: The implementation file
/** @file Sphere.cpp */
#include <iostream>
#include "Sphere.h" // header file
using namespace std;
Sphere::Sphere() : theRadius(1.0)
{
} // end default constructor

Sphere::Sphere(double initialRadius)
{
 if (initialRadius > 0)
 theRadius = initialRadius;
 else
 theRadius = 1.0;
} // end constructor

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: The implementation file
void Sphere::setRadius(double newRadius)
{

 if (newRadius > 0)
 theRadius = newRadius;
 else
 theRadius = 1.0;

} // end setRadius

• The constructor could call setRadius

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: The implementation file
double Sphere::getRadius() const
{

 return theRadius;
} // end getRadius
. . .

double Sphere::getArea() const
{

 return 4.0 * PI * theRadius * theRadius;
} // end getArea
. . .

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Classes: Using the class Sphere
#include <iostream>
#include "Sphere.h" // header file

using namespace std;
int main() // the client
{

 Sphere unitSphere;

 Sphere mySphere(5.1);
 cout << mySphere.getDiameter() << endl;

 . . .

} // end main

3

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inheritance in C++
• A derived class or subclass inherits any of the

publicly defined methods or data members of a
base class or superclass

#include “Sphere.h”
enum Color {RED, BLUE, GREEN, YELLOW};
class ColoredSphere: public Sphere
{
public:
…
Color getColor() const;

…
private:
 Color c;
} // end ColoredSphere

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Inheritance in C++

• An instance of a derived class is considered
to also be an instance of the base class
– Can be used anywhere an instance of the base

class can be used
• An instance of a derived class can invoke

public methods of the base class

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Namespaces

• A mechanism for logically grouping declarations
and definitions into a common declarative region

namespace myNamespace
 {

 // Declarations . . .

} //end myNamespace

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Namespaces

• The contents of the namespace can be
accessed by code inside or outside the
namespace
– Use the scope resolution operator (::) to

access elements from outside the namespace
– Alternatively, the using declaration allows

the names of the elements to be used directly

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Namespaces

• Creating a namespace
namespace smallNamespace
{
 int count = 0;
 void abc();
} // end smallNamespace

• Using a namespace
using namespace smallNamespace;
count +=1;
abc();

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Namespaces

• Items declared in the C++ Standard Library
are declared in the std namespace

• You include files for several functions
declared in the std namespace
– To include input and output functions from the

C++ library, write
#include <iostream>

using namespace std;

4

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• Both an array and a list identify their items

by number
– Using an array to represent a list is a natural

choice
– Store a list’s items in an array items

• Distinguish between the list’s length and the
array’s size
– Keep track of the list’s length

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• Header file
/** @file ListA.h */
const int MAX_LIST = maximum-size-of-list;
typedef desired-type-of-list-item ListItemType;
class List
{
public:
 . . .
private:
 ListItemType items[MAX_LIST];
 int size;
} // end List

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List

• A list’s kth item is stored in items[k-1]

Figure 3-11 An array-based implementation of the ADT list

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List

• To insert an item, make room in the array

Figure 3-12 Shifting items for insertion at position 3

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Array-Based ADT List
• To delete an item, remove gap in array

Figure 3-13 (a) Deletion causes a gap; (b) fill gap by shifting

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• Exception
– A mechanism for handling an error during

execution
– A function can indicate that an error has

occurred by throwing an exception
– The code that deals with the exception is said to

handle it
• Uses a try block and catch blocks

5

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• try block
– Place a statement that might throw an exception

within a try block
try
{

 statement(s);
}

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• catch block
– Deals with an exception
catch (ExceptionClass identifier)
{
 statement(s);
}

• Write a catch block for each type of
exception handled

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• When a statement in a try block causes an
exception
– Rest of try block is ignored

• Destructors of objects local to the block are called
– Control passes to catch block corresponding

to the exception
– After a catch block executes, control passes

to statement after last catch block associated
with the try block

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

C++ Exceptions

• Throwing exceptions
– A throw statement throws an exception

throw ExceptionClass(stringArgument);
– Methods that throw an exception have a throw clause
 void myMethod(int x) throw(MyException)
 {
 if (. . .)
 throw MyException(“MyException: …”);
 . . .

 } // end myMethod

• You can use an exception class in the C++
Standard Library or define your own

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions

• We define two exception classes
#include <stdexcept>
#include <string>
using namespace std;
class ListIndexOutOfRangeException :
 public out_of_range
{
public:
 ListIndexOutOfRangeException(const string &
 message = “”)

 :
out_of_range(message.c_str())

{}
}; // end ListException

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions

#include <stdexcept>
#include <string>
using namespace std;
class ListException : public logic_error
{
public:
 ListException(const string & message = “”)

 : logic_error(message.c_str())
{}

}; // end ListException

6

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An ADT List Implementation Using
Exceptions
/** @file ListAexcept.h */
#include “ListException.h”
#include “ListIndexOutOfRangeException.h”
 . . .
class List
{
public:
 . . .
 void insert(int index,
 const ListItemType& newItem)
 throw(ListIndexOutOfRangeException,
 ListException);
 . . .
} // end List

