
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 3:
Data Abstraction: The Walls

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Modularity
– Keeps the complexity of a large program

manageable by systematically controlling the
interaction of its components

– Isolates errors
– Eliminates redundancies

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Modularity (Continued)
– A modular program is

• Easier to write
• Easier to read
• Easier to modify

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Functional abstraction
– Separates the purpose and use of a module from

its implementation
– A module’s specifications should

• Detail how the module behaves
• Be independent of the module’s implementation

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Information hiding
– Hides certain implementation details within a

module
– Makes these details inaccessible from outside

the module

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

Figure 3-1

Isolated tasks: the implementation of task T does not affect task Q

2

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types
• The isolation of modules is not total

– A function’s specification, or contract, governs how it
interacts with other modules

Figure 3-2 A slit in the wall

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Typical operations on data
– Add data to a data collection
– Remove data from a data collection
– Ask questions about the data in a data

collection

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

• Data abstraction
– Asks you to think what you can do to a

collection of data independently of how you do
it

– Allows you to develop each data structure in
relative isolation from the rest of the solution

– A natural extension of functional abstraction

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types
• Abstract data type (ADT)

– An ADT is composed of
• A collection of data
• A set of operations on that data

– Specifications of an ADT indicate
• What the ADT operations do, not how to implement

them
– Implementation of an ADT

• Includes choosing a particular data structure

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

ADT vs Data Structure

• ADT
– Collection of data
– Set of operations on the data
– Example: list (we will define shortly)

• Data Structure
– Construct within programming language
– Stores a collection of data
– Example: array

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstract Data Types

Figure 3-4

A wall of ADT operations isolates a data structure from the program that uses it

3

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Specifying ADTs: The ADT List
• Except for the first and last items in a list,

each item has a unique predecessor and a
unique successor

• Head (or front) does not have a predecessor
• Tail (or end) does not have a successor

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List
• Items are referenced by their position within

the list
• Specifications of the ADT operations

– Define an operation contract for the ADT list
– Do not specify how to store the list or how to

perform the operations
• ADT operations can be used in an

application without the knowledge of how
the operations will be implemented

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

• ADT List Operations
– Create an empty list
– Destroy a list
– Determine whether a list is empty
– Determine the number of items in a list
– Insert an item at a given position in the list
– Delete the item at a given position in the list
– Look at (retrieve) the item at a given position

in the list

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

• Operation Contract for the ADT List
 createList()
 destroyList()
 isEmpty():boolean {query}
 getLength():integer {query}
 insert(in index:integer, in newItem:ListItemType,

 out success:boolean)
 remove(in index:integer, out success:boolean)
 retrieve(in index:integer, out dataItem:ListItemType,

 out success:boolean) {query}

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

• Pseudocode to create the list
 milk, eggs, butter

aList.createList()
aList.insert(1, milk, success)
aList.insert(2, eggs, success)
aList.insert(3, butter, success)

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

milk, eggs, butter

• Insert bread after milk
aList.insert(2, bread, success)

milk, bread, eggs, butter
• Insert juice at end of list
aList.insert(5, juice, success)

milk, bread, eggs, butter, juice

4

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

milk, bread, eggs, butter, juice
• Remove eggs
aList.remove(3, success)

milk, bread, butter, juice
• Insert apples at beginning of list
aList.insert(1, apples, success)

 apples, milk, bread, butter, juice

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

 apples, milk, bread, butter, juice

• Pseudocode function that displays a list
displayList(in aList:List)

 for (position = 1 to aList.getLength())
 { aList.retrieve(position, dataItem,
 success)

 Display dataItem
 } // end for

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT List

Figure 3-7

The wall between displayList and the implementation of the ADT list

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Sorted List

• The ADT sorted list
– Maintains items in sorted order
– Inserts and deletes items by their values, not

their positions

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The ADT Sorted List
• Operation Contract for the ADT Sorted List

 sortedIsEmpty():boolean{query}
 sortedGetLength():integer{query}
 sortedInsert(in newItem:ListItemType,

 out success:boolean)
 sortedRemove(in index:integer,

 out success :boolean)
 sortedRetrieve(in index:integer,
 out dataItem:ListItemType,
 out success :boolean){query}
 locatePosition(in anItem:ListItemType,
 out isPresent:boolean):integer{query}

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Designing an ADT

• The design of an ADT should evolve
naturally during the problem-solving
process

• Questions to ask when designing an ADT
– What data does a problem require?
– What operations does a problem require?

5

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Designing an ADT

• For complex abstract data types, the
behavior of the operations must be specified
using axioms
– Axiom: A mathematical rule
– Example: (aList.createList()).size() = 0

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementing ADTs

• Choosing the data structure to represent the
ADT’s data is a part of implementation
– Choice of a data structure depends on

• Details of the ADT’s operations
• Context in which the operations will be used

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementing ADTs

• Implementation details should be hidden
behind a wall of ADT operations
– A program (client) should only be able to

access the data structure by using the ADT
operations

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementing ADTs

Figure 3-8

ADT operations provide access to a data structure

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Implementing ADTs

Figure 3-9 Violating the wall of ADT operations

