
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Chapter 2:
Recursion: The Mirrors

Data Abstraction & Problem Solving with
C++

Fifth Edition

by Frank M. Carrano

2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recursive Solutions

• Recursion is an extremely powerful problem-solving technique
– Breaks problem into smaller identical problems
– An alternative to iteration, which involves loops

• A binary search is recursive
– Repeatedly halves the data collection and searches the one half that

could contain the item
– Uses a divide and conquer strategy

3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recursive Solutions

• Facts about a recursive solution
– A recursive function calls itself
– Each recursive call solves an identical, but smaller, problem
– The solution to at least one smaller problem— the base case—is known
– Eventually, one of the smaller problems must be the base case; reaching

the base case enables the recursive calls to stop

4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recursive Solutions

• Four questions for constructing recursive solutions
– How can you define the problem in terms of a smaller problem of

the same type?
– How does each recursive call diminish the size of the problem?
– What instance of the problem can serve as the base case?
– As the problem size diminishes, will you reach this base case?

5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

• Problem
– Compute the factorial of an integer n

• An iterative definition of factorial(n)
factorial(n) = n * (n – 1) * (n – 2) * … * 1

 for any integer n > 0
factorial(0) = 1

6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

• A recursive definition of factorial(n)
factorial(n) = 1 if n = 0
 = n * factorial(n–1) if n > 0

2

7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

• A recurrence relation
– A mathematical formula that generates the terms in a sequence from

previous terms
– Example

factorial(n) = n * [(n – 1) * (n – 2) * … * 1]
 = n * factorial(n – 1)

8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

• Box trace
– A systematic way to trace the actions of a recursive function
– Each box roughly corresponds to an activation record
– Contains a function’s local environment at the time of and as a result of

the call to the function

9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

Figure 2-3 A box

10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive Valued Function:
The Factorial of n

• A function’s local environment includes:
– The function’s local variables
– A copy of the actual value arguments
– A return address in the calling routine
– The value of the function itself

11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive void Function:
Writing a String Backward

• Problem
– Given a string of characters, write it in reverse order

• Recursive solution
– Each recursive step of the solution diminishes by 1 the length of the

string to be written backward
– Base case: write the empty string backward

12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive void Function:
Writing a String Backward

• Execution of writeBackward can be traced using the box
trace

• Temporary cout statements can be used to debug a recursive
method

3

13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

A Recursive void Function:
Writing a String Backward

Figure 2-6 A recursive solution

14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Multiplying Rabbits
(The Fibonacci Sequence)

• “Facts” about rabbits
– Rabbits never die
– A rabbit reaches sexual maturity exactly two months after birth, that is,

at the beginning of its third month of life
– Rabbits are always born in male-female pairs. At the beginning of every

month, each sexually mature male-female pair gives birth to exactly one
male-female pair

15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Multiplying Rabbits
(The Fibonacci Sequence)

• Problem
– How many pairs of rabbits are alive in month n?

• Recurrence relation
rabbit(n) = rabbit(n – 1) + rabbit(n – 2)

16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Multiplying Rabbits
(The Fibonacci Sequence)

Figure 2-10 Recursive solution to the rabbit problem

17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Multiplying Rabbits
(The Fibonacci Sequence)

• Base cases
– rabbit(2), rabbit(1)

• Recursive definition
rabbit(n) = 1 if n is 1 or 2

 rabbit(n – 1) + rabbit(n – 2) if n > 2

• Fibonacci sequence
– The series of numbers rabbit(1), rabbit(2), rabbit(3),

and so on; that is, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing a Parade

• Problem
– How many ways can you organize a parade of length n?
– The parade will consist of bands and floats in a single line
– One band cannot be placed immediately after another

4

19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing a Parade

• Let:
– P(n) be the number of ways to organize a parade of length n
– F(n) be the number of parades of length n that end with a float
– B(n) be the number of parades of length n that end with a band

• Then
– P(n) = F(n) + B(n)

20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing a Parade

• Number of acceptable parades of length n that end with a float
– F(n) = P(n – 1)

• Number of acceptable parades of length n that end with a band
– B(n) = F(n – 1)

• Number of acceptable parades of length n
– P(n) = P(n – 1) + P(n – 2)

21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing a Parade

• Base cases
P(1) = 2 (The parades of length 1 are

 float and band.)
P(2) = 3 (The parades of length 2 are

float- float, band- float, and float-band.)

22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing a Parade

• Solution
P(1) = 2
P(2) = 3
P(n) = P(n – 1) + P(n – 2) for n > 2

23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

• Problem
– How many different choices are possible for exploring k planets out of n

planets in a solar system?

24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

• Let c(n, k) be the number of groups of k planets chosen from n
• In terms of Planet X:

c(n, k) = the number of groups of k planets that
 include Planet X

 +
 the number of groups of k planets that
 do not include Planet X

5

25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

• The number of ways to choose k out of n things is the sum of
– The number of ways to choose k – 1 out of n – 1 things

and the number of ways to choose k out of n – 1 things
– c(n, k) = c(n – 1, k – 1) + c(n – 1, k)

26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

• Base cases
– There is one group of everything

c(k, k) = 1
– There is one group of nothing

c(n, 0) = 1
– Although k cannot exceed n here, we want our solution to be general

c(n, k) = 0 if k > n

27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

• Recursive solution
c(n, k) =

 1 if k = 0
 1 if k = n
 0 if k > n
 c(n – 1, k – 1) + c(n – 1, k) if 0 < k < n

28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Mr. Spock’s Dilemma
(Choosing k out of n Things)

Figure 2-12 The recursive calls that c(4, 2) generates

29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Searching an Array:
Finding the Largest Item in an Array

• A recursive solution
if (anArray has only one item)
 maxArray(anArray) is the item in anArray

else if (anArray has more than one item)
 maxArray(anArray) is the maximum of

 maxArray(left half of anArray) and

 maxArray(right half of anArray)

30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Searching an Array:
Finding the Largest Item in an Array

Figure 2-13 Recursive solution to the largest-item problem

6

31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Binary Search
• A high-level binary search

binarySearch(in anArray:ArrayType, in value:ItemType)

if (anArray is of size 1)
 Determine if anArray’s item is equal to value

else
{ Find the midpoint of anArray
 Determine which half of anArray contains value

 if (value is in the first half of anArray)
 binarySearch(first half of anArray, value)
 else
 binarySearch(second half of anArray, value)

}

32Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Binary Search

• Implementation issues:
– How will you pass “half of anArray” to the recursive calls to
binarySearch?

– How do you determine which half of the array contains value?
– What should the base case(s) be?
– How will binarySearch indicate the result of the search?

33Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Finding the kth Smallest Item in an Array

• The recursive solution proceeds by:
– Selecting a pivot item in the array
– Cleverly arranging, or partitioning, the items in the array about this

pivot item
– Recursively applying the strategy to one of the partitions

34Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Finding the kth Smallest Item in an Array

Figure 2-18 A partition about a pivot

35Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Finding the kth Smallest Item in an Array

• Let:
kSmall(k, anArray, first, last) =

 kth smallest item in anArray[first..last]

36Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Finding the kth Smallest Item in an Array

• Solution:
kSmall(k, anArray, first, last)

= kSmall(k,anArray,first,pivotIndex-1)

 if k < pivotIndex – first + 1
= p if k = pivotIndex – first + 1
= kSmall(k-(pivotIndex-first+1), anArray,

 pivotIndex+1, last)

 if k > pivotIndex – first + 1

7

37Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Organizing Data:
The Towers of Hanoi

Figure 2-19a and b (a) The initial state; (b) move n - 1 disks from A to C

38Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Towers of Hanoi

Figure 2-19c and d (c) move one disk from A to B; (d) move n - 1 disks from C to B

39Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Towers of Hanoi
• Pseudocode solution

 solveTowers(count, source, destination, spare)

 if (count is 1)
 Move a disk directly from source to

 destination
 else
 { solveTowers(count-1, source, spare,

 destination)
 solveTowers(1, source, destination, spare)
 solveTowers(count-1, spare, destination,

 source)
 } //end if

40Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recursion and Efficiency

• Some recursive solutions are so inefficient that they should not
be used

• Factors that contribute to the inefficiency of some recursive
solutions
– Overhead associated with function calls
– Inherent inefficiency of some recursive algorithms

41Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Recursion and Efficiency

• Do not use a recursive solution if it is inefficient and there is a
clear, efficient iterative solution

42Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Recursion solves a problem by solving a smaller
problem of the same type

• Four questions:
– How can you define the problem in terms of a smaller problem of

the same type?
– How does each recursive call diminish the size of the problem?
– What instance(s) of the problem can serve as the base case?
– As the problem size diminishes, will you reach a base case?

8

43Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• To construct a recursive solution, assume a recursive call’s
postcondition is true if its precondition is true

• The box trace can be used to trace the actions of a recursive
method

• Recursion can be used to solve problems whose iterative
solutions are difficult to conceptualize

44Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Summary

• Some recursive solutions are much less efficient than a
corresponding iterative solution due to their inherently
inefficient algorithms and the overhead of function calls

• If you can easily, clearly, and efficiently solve a problem by
using iteration, you should do so

