

Recursive Solutions

- Recursion is an extremely powerful problem-solving technique - Breaks problem into smaller identical problems
- An alternative to iteration, which involves loops
- A binary search is recursive

Repeatedly halves the data collection and searches the one half that could contain the item

- Uses a divide and conquer strategy

A Recursive Valued Function: The Factorial of \boldsymbol{n}

- A recursive definition of factorial(n)

$$
\begin{aligned}
\operatorname{factorial}(n) & =1 & & \text { if } n=0 \\
& =n * \text { factorial }(n-1) & & \text { if } n>0
\end{aligned}
$$

A Recursive Valued Function:
The Factorial of \boldsymbol{n}

- Problem
- Compute the factorial of an integer n
- An iterative definition of factorial(n)
factorial $(n)=n *(n-1) *(n-2) * \ldots * 1$
for any integer $n>0$
factorial $(0)=1$
1

Recursive Solutions

- Four questions for constructing recursive solutions
- How can you define the problem in terms of a smaller problem of the same type?
- How does each recursive call diminish the size of the problem?
- What instance of the problem can serve as the base case?
- As the problem size diminishes, will you reach this base case?

Recursive Solutions

- Facts about a recursive solution

A recursive function calls itself

- Each recursive call solves an identical, but smaller, problem
- The solution to at least one smaller problem - the base case - is known

A Recursive Valued Function:
 The Factorial of \boldsymbol{n}

- A recurrence relation

A mathematical formula that generates the terms in a sequence from previous terms

- Example
factorial $(n)=n *[(n-1) *(n-2) * \ldots * 1]$
$=n *$ factorial $(n-1)$

A Recursive Valued Function:

 The Factorial of n- Box trace
- A systematic way to trace the actions of a recursive function
- Each box roughly corresponds to an activation record
- Contains a function's local environment at the time of and as a result of the call to the function

A Recursive Valued Function:

The Factorial of \boldsymbol{n}

- A function's local environment includes:
- The function's local variables
- A copy of the actual value arguments
- A return address in the calling routine
- The value of the function itself

A Recursive Valued Function:
The Factorial of \boldsymbol{n}

```
\[
\begin{aligned}
& \text { A: fact }(n-1)=? \\
& \text { return ? }
\end{aligned}
\]
n = 3
A: 1act(n-1) =
```

Figure 2-3 A box

A Recursive void Function: Writing a String Backward

- Execution of writeBackward can be traced using the box trace
- Temporary cout statements can be used to debug a recursive

A Recursive void Function:

Writing a String Backward

- Problem

Given a string of characters, write it in reverse order

- Recursive solution

Each recursive step of the solution diminishes by 1 the length of the string to be written backward

- Base case: write the empty string backward
method

A Recursive void Function: Writing a String Backward

Figure 2-6 A recursive solution

Multiplying Rabbits

(The Fibonacci Sequence)

- "Facts" about rabbits
- Rabbits never die

A rabbit reaches sexual maturity exactly two months after birth, that is at the beginning of its third month of life
Rabbits are always born in male-female pairs. At the beginning of every month, each sexually mature male-female pair gives birth to exactly one male-female pair

Multiplying Rabbits
 (The Fibonacci Sequence)

- Problem
- How many pairs of rabbits are alive in month n ?
- Recurrence relation
$\operatorname{rabbit}(n)=\operatorname{rabbit}(n-1)+\operatorname{rabbit}(n-2)$

Multiplying Rabbits (The Fibonacci Sequence)

Figure 2-10 Recursive solution to the rabbit problem

Multiplying Rabbits

(The Fibonacci Sequence)

- Base cases
- rabbit(2), rabbit(1)
- Recursive definition
$\operatorname{rabbit}(n)=1$
if n is 1 or 2
- Fibonacci sequence

The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on; that is, $1,1,2,3,5,8,13,21,34$,

Organizing a Parade

- Problem
- How many ways can you organize a parade of length n ?
- The parade will consist of bands and floats in a single line
- One band cannot be placed immediately after another

Organizing a Parade

- Let:
- $P(n)$ be the number of ways to organize a parade of length n
- $F(n)$ be the number of parades of length n that end with a float
- $B(n)$ be the number of parades of length n that end with a band
- Then
$-P(n)=F(n)+B(n)$

Organizing a Parade

- Base cases
$P(1)=2 \quad$ (The parades of length 1 are float and band.)
$P(2)=3 \quad$ (The parades of length 2 are float- float, band- float, and float-band.)

Organizing a Parade

- Number of acceptable parades of length n that end with a float - $F(n)=P(n-1)$
- Number of acceptable parades of length n that end with a band - $B(n)=F(n-1)$
- Number of acceptable parades of length n
$-P(n)=P(n-1)+P(n-2)$

Organizing a Parade

- Solution
$P(1)=2$
$P(2)=3$
$P(n)=P(n-1)+P(n-2)$ for $n>2$

Mr. Spock's Dilemma (Choosing \boldsymbol{k} out of \boldsymbol{n} Things)

- Let $c(n, k)$ be the number of groups of k planets chosen from n
- In terms of Planet X:
$c(n, k)=$ the number of groups of k planets that
include Planet X
the number of groups of k planets that do not include Planet X
$+$

Mr. Spock's Dilemma (Choosing \boldsymbol{k} out of \boldsymbol{n} Things)

- Problem

How many different choices are possible for exploring k planets out of n planets in a solar system?

Mr. Spock's Dilemma
 (Choosing \boldsymbol{k} out of \boldsymbol{n} Things)

- The number of ways to choose k out of n things is the sum of
- The number of ways to choose $k-1$ out of $n-1$ things and the number of ways to choose k out of $n-1$ things
$-c(n, k)=c(n-1, k-1)+c(n-1, k)$

Mr. Spock's Dilemma
(Choosing \boldsymbol{k} out of \boldsymbol{n} Things)

- Base cases
- There is one group of everything

$$
c(k, k)=1
$$

- There is one group of nothing

$$
c(n, 0)=1
$$

- Although k cannot exceed n here, we want our solution to be general $c(n, k)=0$ if $k>n$

Mr. Spock's Dilemma (Choosing \boldsymbol{k} out of \boldsymbol{n} Things)

Figure 2-12 The recursive calls that $\mathrm{c}(4,2)$ generates
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Westey. Ver. 5.0

Searching an Array:

Searching an Array:
Finding the Largest Item in an Array

- A recursive solution
if (anArray has only one item)
maxArray (anArray) is the item in anArray
else if (anArray has more than one item) maxArray (anArray) is the maximum of maxArray(left half of anArray) and maxArray(right half of anArray)

Finding the Largest Item in an Array

Figure 2-13 Recursive solution to the largest-item problem

Binary Search

- A high-level binary search
binarySearch(in anArray:ArrayType, in value:ItemType)
if (anArray is of size 1)
Determine if anArray's item is equal to value else
\{ Find the midpoint of anArray
Determine which half of anArray contains value
if (value is in the first half of anArray)
binarysearch (first half of anArray, value)
else
binarySearch(second half of anArray, value)

Finding the $\boldsymbol{k}^{\text {th }}$ Smallest Item in an Array

- The recursive solution proceeds by:
- Selecting a pivot item in the array
- Cleverly arranging, or partitioning, the items in the array about this pivot item
- Recursively applying the strategy to one of the partitions

Finding the $\boldsymbol{k}^{\text {th }}$ Smallest Item in an Array

Figure 2-18 A partition about a pivot

Finding the $\boldsymbol{k}^{\text {th }}$ Smallest Item in an Array

- Let:
kSmall(k, anArray, first, last) = $k^{\text {th }}$ smallest item in anArray[first. .last]

Finding the $\boldsymbol{k}^{\text {th }}$ Smallest Item in an Array

- Solution:
kSmall(k, anArray, first, last)
$=k S m a l l(k$, anArray, first, pivotIndex-1)
if $k<$ pivotIndex - first +1
$=p \quad$ if $k=$ pivotIndex - first +1
$=k S m a l l(k-(p i v o t I n d e x-f i r s t+1)$, anArray, pivotIndex+1, last) if $k>$ pivotIndex - first +1

Organizing Data:
 The Towers of Hanoi

The Towers of Hanoi

Figure 2-19c and d (c) move one disk from A to B; (d) move $n-1$ disks from C to B
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.O.

Recursion and Efficiency

- Some recursive solutions are so inefficient that they should not be used
- Factors that contribute to the inefficiency of some recursive solutions
- Overhead associated with function calls
- Inherent inefficiency of some recursive algorithms

Summary

- Recursion solves a problem by solving a smaller problem of the same type
- Four questions:

How can you define the problem in terms of a smaller problem of the same type?

- How does each recursive call diminish the size of the problem?
- What instance(s) of the problem can serve as the base case?
- As the problem size diminishes, will you reach a base case?

Summary
- To construct a recursive solution, assume a recursive call's
postcondition is true if its precondition is true
- The box trace can be used to trace the actions of a recursive
method
- Recursion can be used to solve problems whose iterative
solutions are difficult to conceptualize

Summary

- Some recursive solutions are much less efficient than a
corresponding iterative solution due to their inherently
inefficient algorithms and the overhead of function calls
- If you can easily, clearly, and efficiently solve a problem by
using iteration, you should do so

