
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

Chapter 1: Principles of
Programming and Software Engineering

1-2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-5 A UML class diagram of a banking system

1-3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships
– Association

• The classes know about each other
• Example: The Bank and Customer classes

– Aggregation (Containment)
• One class contains an instance of another class
• Example: The Bank and Account classes
• The lifetime of the containing object and the object contained

are not necessarily the same
– Banks “live” longer than the accounts they contain

1-4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships (Continued)
– Composition

• A stronger form of aggregation
• The lifetime of the containing object and the object

contained are the same
• Example: A ballpoint pen

– When the pen “dies,” so does the ball

2

1-5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships (Continued)
– Generalization

• Indicates a family of classes related by inheritance
• Example: Account is an ancestor class; the attributes and

operations of Account are inherited by the descendant classes,
Checking and Savings

1-6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D
• Notation

– Association
• A relationship between two classes is shown by a connecting

solid line
• Relationships more specific than association are indicated with

arrowheads, as you will see
• Multiplicities: Optional numbers at the end(s) of an association

or other relationship
– Each bank object is associated with zero or more customers

(denoted 0..*), but each customer is associated with one bank
– Each customer can have multiple accounts of any type, but an

account can belong to only one customer

1-7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D
• Notation (Continued)

– Aggregation (Containment)
• Denoted by an open diamond arrowhead pointing to the

containing class
– Composition

• Denoted by a filled-in diamond arrowhead pointing to the
containing class

– Generalization (Inheritance)
• Denoted by an open triangular arrowhead pointing to the

ancestor (general or parent) class
– UML also provides notation to specify visibility, type,

parameter, and default value information

1-8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

The Software Life Cycle

• Describes the phases of software development
from conception to deployment to replacement to
deletion
– We will examine the phases from project conception to

deployment to end users
– Beyond this development process, software needs

maintenance to correct errors and add features
– Eventually software is retired

3

1-9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Iterative and Evolutionary
Development

• Iterative development of a solution to a problem
– Many short, fixed-length iterations
– Each iteration builds on the previous iteration until a

complete solution is achieved
– Each iteration cycles through analysis, design,

implementation, testing, and integration of a small
portion of the problem domain

– Early iterations create the core of the system; further
iterations build on that core

1-10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Iterative and Evolutionary
Development

• Each iteration has a duration called the timebox
– Chosen at beginning of project
– Typically 2 to 4 weeks

• The partial system at the end of each iteration
should be functional and completely tested

• Each iteration makes relatively few changes to the
previous iteration

• End users can provide feedback at the end of each
iteration

1-11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases
• RUP gives structure to the software development process
• RUP uses the OOA/D tools we introduced
• Four development phases:

– Inception: feasibility study, project vision, time/cost estimates
– Elaboration: refinement of project vision, time/cost estimates, and

system requirements; development of core system
– Construction: iterative development of remaining system
– Transition: testing and deployment of the system

1-12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

Figure 1-7 RUP development phases

4

1-13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases
• Inception phase

– Define initial set of system requirements
– Generate a core set of use case scenarios (about 10% of total

number)
– Identify highest-risk aspects of solution
– Choose iteration timebox length

1-14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases
• Elaboration phase

– Iteratively develop core architecture of system
– Address highest-risk aspects of system

• Most potential for system failure, so deal with them first
– Define most of the system requirements
– Extends over at least 2 iterations to allow for feedback
– Each iteration progresses through OO analysis and design

(use case scenarios, sequence diagrams, class diagrams), coding,
testing, integration, and feedback

1-15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases
• Construction phase

– Begins once most of the system requirements are formalized
– Develops the remaining system
– Each iteration requires less analysis and design
– Focus is on implementation and testing

• Transition phase
– Beta testing with advanced end users
– System moves into a production environment

1-16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Rational Unified Process (RUP)
Development Phases

Figure 1-8 Relative amounts of work done in each development phase

5

1-17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

What About the Waterfall Method
of Development?
• Develops a solution sequentially by moving through

phases: requirements analysis, design, implementation,
testing, deployment

• Hard to correctly specify a system without early feedback
• Wrong analysis leads to wrong solution
• Outdated and should not be used
• Do not impose this method on RUP development

1-18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Achieving a Better Solution

• Analysis and design improve solutions
• What aspects of one solution make it better than another?
• What aspects lead to better solutions?

1-19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

• Cohesion
– A highly cohesive module performs one well-defined task

• A person with low cohesion has “too many irons in the fire”
– Promotes self-documenting, easy-to-understand code
– Easy to reuse in other software projects
– Easy to revise or correct
– Robust: less likely to be affected by change; performs well under

unusual conditions
– Promotes low coupling

1-20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

• Coupling
– Modules with low coupling are independent of one another
– System of modules with low coupling is

• Easier to change: A change to one module won’t affect another
• Easier to understand

– Module with low coupling is
• Easier to reuse
• Has increased cohesion

– Coupling cannot be and should not be eliminated entirely
• Objects must collaborate

– Class diagrams show dependencies among classes, and hence
coupling

6

1-21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions
• Minimal and complete interfaces

– A class interface declares publicly accessible methods (and data)
• Describes only way for programmers to interact with the class

– Classes should be easy to understand, and so have few methods
• Desire to provide power is at odds with this goal

– Complete interface
• Provides methods for any reasonable task consistent with the

responsibilities of the class
• Important that an interface is complete

– Minimal interface
• Provides only essential methods
• Classes with minimal interfaces are easier to understand, use, and

maintain
• Less important than completeness

1-22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Evaluation of Designs and
Solutions

– Signature: the interface for a method or function
• Name of method/function
• Arguments (number, order, type)
• Qualifiers such as const

1-23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• A module’s operation contract specifies its
– Purpose
– Assumptions
– Input
– Output

• Begin the contract during analysis, finish during
design

• Use to document code, particularly in header files

1-24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• Specify data flow among modules
– What data is available to a module?
– What does the module assume?
– What actions take place?
– What effect does the module have on the data?

7

1-25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

• Contract shows the responsibilities of one module to
another

• Does not describe how the module will perform its task
• Precondition: Statement of conditions that must exist

before a module executes
• Postcondition: Statement of conditions that exist after a

module executes

1-26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

First draft specifications
sort(anArray, num)
// Sorts an array.
// Precondition: anArray is an array of num

 integers; num > 0.
// Postcondition: The integers in anArray are

 sorted.

1-27Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Operation Contracts

Revised specifications
sort(anArray, num)
// Sorts an array into ascending order.
// Precondition: anArray is an array of num
// integers; 1 <= num <= MAX_ARRAY, where
// MAX_ARRAY is a global constant that specifies
// the maximum size of anArray.
// Postcondition: anArray[0] <= anArray[1] <= ...
// <= anArray[num-1], num is unchanged.

1-28Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• Assertion: A statement about a particular condition at a
certain point in an algorithm
– Preconditions and postconditions are examples of assertions

• Invariant: A condition that is always true at a certain point
in an algorithm

• Loop invariant: A condition that is true before and after
each execution of an algorithm’s loop
– Can be used to detect errors before coding is started

8

1-29Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• Loop invariant (continued)
– The invariant for a correct loop is true:

• Initially, after any initialization steps, but before the loop
begins execution

• Before every iteration of the loop
• After every iteration of the loop
• After the loop terminates

1-30Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Verification

• It is possible to prove the correctness of some
algorithms
– Like proving a theorem in geometry
– Starting with a precondition, you prove that each

assertion before a step in an algorithm leads to the
assertion after the step until you reach the postcondition

1-31Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

What is a Good Solution?

• A solution is good if:
– The total cost it incurs over all phases of its life cycle is

minimal
• The cost of a solution includes:

– Computer resources that the program consumes
– Difficulties encountered by users
– Consequences of a program that does not behave

correctly
• Programs must be well structured and documented
• Efficiency is one aspect of a solution’s cost

