
1

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Data Abstraction & Problem Solving with
C++

Fifth Edition
by Frank M. Carrano

Chapter 1: Principles of
Programming and Software Engineering

1-2Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Software Engineering and
Object-Oriented Design

• Coding without a solution design increases
debugging time

• A team of programmers for a large software
development project requires
– An overall plan
– Organization
– Communication

• Software engineering
– Provides techniques to facilitate the development of

computer programs

1-3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

An Examination of Problem
Solving

• Problem solving
– The process of taking the statement of a problem and

developing a computer program that solves that
problem

• Object-oriented analysis and design (OOA / D)
– A process for problem solving
– A problem solution is a program consisting of a system

of interacting classes of objects
• Each object has characteristics and behaviors related to the

solution
• A class is a set of objects having the same type

1-4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• A solution is a C++ program consisting of:
– Modules

• A single, stand-alone function
• A method of a class
• A class
• Several functions or classes working closely

together
• Other blocks of code

2

1-5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• Functions and methods implement
algorithms
– Algorithm: a step-by-step recipe for performing

a task within a finite period of time
– Algorithms often operate on a collection of data

1-6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Aspects of an Object-Oriented
Solution

• Create a good set of modules
– Modules must store, move, and alter data
– Modules use algorithms to communicate with

one another
• Organize your data collection to facilitate

operations on the data

1-7Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

• Abstraction
– Separates the purpose of a module from its

implementation
– Specifications for each module are written

before implementation
– Functional abstraction

• Separates the purpose of a module from its
implementation

1-8Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

– Data abstraction
• Focuses on the operations of data, not on the

implementation of the operations
– Abstract data type (ADT)

• A collection of data and a set of operations on the
data

• You can use an ADT’s operations without knowing
their implementations or how data is stored, if you
know the operations’ specifications

3

1-9Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

– Data structure
• A construct that you can define within a

programming language to store a collection of data
– Develop algorithms and ADTs in tandem

1-10Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Abstraction and Information
Hiding

• Information hiding
– Hide details within a module
– Ensure that no other module can tamper with

these hidden details
– Public view of a module

• Described by its specifications
– Private view of a module

• Implementation details that the specifications should
not describe

1-11Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Principles of Object-Oriented
Programming (OOP)

• Object-oriented languages enable us to build
classes of objects

• A class combines
– Attributes (characteristics) of objects of a single type

• Typically data
• Called data members

– Behaviors (operations)
• Typically operate on the data
• Called methods or member functions

1-12Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Principles of Object-Oriented
Programming

• Three principles of object-oriented programming
– Encapsulation

• Objects combine data and operations
• Hides inner details

– Inheritance
• Classes can inherit properties from other classes
• Existing classes can be reused

– Polymorphism
• Objects can determine appropriate operations at execution time

4

1-13Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design

• Analysis
– Process to develop

• An understanding of the problem
• The requirements of a solution

– What a solution must be and do
– Not how to design or implement it

– Generates an accurate understanding of what end users
will expect the solution to be and do

– Think about the problem, not how to solve it

1-14Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design

• Object-oriented analysis (OOA)
– Expresses an understanding of the problem and the

requirements of a solution in terms of objects within the
problem domain

– Objects can represent
• Real-world objects
• Software systems
• Ideas

– OOA describes objects and their interactions among
one another

1-15Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Object-Oriented Analysis and
Design
• Object-oriented design (OOD)

– Expresses an understanding of a solution that fulfills the
requirements discovered during OOA

– Describes a solution in terms of
• Software objects
• The collaborations of these objects with one another

– Objects collaborate when they send messages (call each other’s
operations)

– Collaborations should be meaningful and minimal
– Creates one or more models of a solution

• Some emphasize interactions among objects
• Others emphasize relationships among objects

1-16Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Unified Modeling Language (UML)
– A tool for exploration and communication during the

design of a solution
– Models a problem domain in terms of objects

independently of a programming language
– Visually represents object-oriented solutions as

diagrams
– Its visual nature is an advantage, since we are visual

creatures
– Enables members of a programming team to

communicate visually with one another and gain a
common understanding of the system being built

5

1-17Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D
• UML use case for OOA

– A set of textual scenarios (stories) of the solution
• Each scenario describes the system’s behavior under certain

circumstances from the perspective of the user
– Focus on the responsibilities of the system to meeting a

user’s goals
• Main success scenario (happy path): interaction between user

and system when all goes well
• Alternate scenarios: interaction between user and system

under exceptional circumstances
– Find noteworthy objects, attributes, and associations

within the scenarios

1-18Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

– An example of a main success scenario
• Customer asks to withdraw money from a bank account
• Bank identifies and authenticates customer
• Bank gets account type, account number, and withdrawal

amount from customer
• Bank verifies that account balance is greater than withdrawal

amount
• Bank generates receipt for the transaction
• Bank counts out the correct amount of money for customer
• Customer leaves bank

1-19Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

– An example of an alternate scenario
• Customer asks to withdraw money from a bank account
• Bank identifies, but fails to authenticate customer
• Bank refuses to process the customer’s request
• Customer leaves bank

1-20Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• UML sequence (interaction) diagram for OOD
– Models the scenarios in a use case
– Shows the interactions among objects over time
– Lets you visualize the messages sent among objects in a

scenario and their order of occurrence
– Helps to define the responsibilities of the objects

• What must an object remember?
• What must an object do for other objects?

6

1-21Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-2 Sequence diagram for the main success scenario

1-22Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-3 Sequence diagram showing the creation of a new object

1-23Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• UML class (static) diagram
– Represents a conceptual model of a class of objects in a

language-independent way
– Shows the name, attributes, and operations of a class
– Shows how multiple classes are related to one another

1-24Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-4 Three possible class diagrams for a class of banks

7

1-25Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

Figure 1-5 A UML class diagram of a banking system

1-26Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver. 5.0.

Applying the UML to OOA/D

• Class relationships
– Association

• The classes know about each other
• Example: The Bank and Customer classes

– Aggregation (Containment)
• One class contains an instance of another class
• Example: The Bank and Account classes
• The lifetime of the containing object and the object contained

are not necessarily the same
– Banks “live” longer than the accounts they contain

