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ABSTRACT 

 

 

RELIABILITY AND VERIFICATION OF NATURAL LANGUAGE  
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With the explosive growth of the World Wide Web has come, not just an 

explosion of information, but also an explosion of false, misleading and unsupported 

information. At the same time, the web is increasingly being used for tasks where 

information quality and reliability are vital, from legal and medical research by both 

professionals and lay people, to fact checking by journalists and research by 

government policy makers.  

 In this thesis we define reliability as a measure of the extent to which 

information on a given web page can be trusted.  We explore the standard criteria for 

determining the reliability of printed information and how the criteria can be 

translated to the web. Based on these criteria, the HTML markup of web pages, 



 vii 

linguistic properties of the text and the link topology of the Web, we develop a set of 

features to use in learned automatic classifiers. This enables us to classify web pages 

in the medical domain as reliable or unreliable with reasonable accuracy. As a 

secondary task we also classify web pages from the medical domain by type 

(commercial, link, or patient leaflet). 

 This work extends previous work on reliability of information in the medical 

domain and of reliability, or quality, of information on the web in general. This work 

also contributes to our knowledge which features are truly appropriate to determine 

reliability on the Web, through empirical testing and principled feature selection. We 

bring a greater level of automation to the task of determining the reliability of medical 

information on the web through the use of a variety of machine learning algorithms. 
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1 INTRODUCTION 

 

 With the explosive growth of the World Wide Web has come, not just an 

explosion of information, but also an explosion of false, misleading and unsupported 

information. At the same time, the web is increasingly being used for tasks where 

information quality and reliability are vital, from legal and medical research by both 

professionals and lay people, to fact checking by journalists and research by 

government policy makers.  

 In this thesis we define reliability as a measure of the extent to which 

information on a given web page can be trusted. By verifiable we mean a reasonable 

determination of the truth or correctness of a statement by examination, research, or 

comparison with similar text. 

 We need to go beyond retrieving relevant information to be able to determine 

whether the information is reliable and can be verified. For example, if Web users 

were able to determine a level of authority, or reliability, of the Web page they are 

currently viewing, they could decide whether additional verification would be 

necessary. A general consumer of information looking up, say, a treatment for a 

minor ailment might be satisfied to know the reliability of the page they are offered, 

or perhaps to compare the reliability rankings of two or three pages with different 

advice. Others, however, such as scholars, students, journalists and policy makers, 

would need to verify sources, check statistics and find other Web documents whose 

authors agree or disagree with a given text segment. This process of checking 

reliability and verification may need to be repeated until the user has reached a level 
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of certainty that they deem sufficient for their use. Thus there is potential for all Web 

users to benefit from information about the reliability and verifiability of text on the 

Web.  

 My ultimate goal is to develop an automatic system that would work with the 

user to measure the reliability of web pages and verify specific information contained 

in a given page, where reliability and verification are defined as above. Clearly 

construction of such a system would be both valuable and desirable.  

 In the process of proposing this research, conducting pilot studies and 

consulting with experts in the field of information retrieval (Martin 2004), we 

determined that the scope of this project far exceeds the finite time allotted for PhD 

dissertation research. Given this, I have narrowed the scope and focus of the current 

work to developing a reliability classifier for web pages in the medical domain and 

the rest of the project has been moved to future work. 

 The reliability classification is currently a page-level classification of whether 

a page is reliable, unreliable, or the classifier is unable to determine a class. This 

allows a user to know with some certainty the can trust the information on a page they 

are reading. The process of verifying specific statements on web pages would 

enhance the reliability classification and is a logical component to implement in the 

future. 

 I chose the medical domain for a number of reasons, the three primary reasons 

being: 

1. Studies have show that it is of great interest to users, 
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2. It is a fairly well defined domain, but with sufficient volume and scope to be 

interesting, 

3. I have some medical background. 

My choice turned out to be a fortuitous one, because there is a great deal of 

interest in the quality of information on medical web pages and there has been a fair 

amount of medical literature on the subject. In addition there is a trend in medicine to 

practice "Evidence-Based Medicine" (EMB), where a medical professional bases 

diagnosis and treatment on techniques that have been empirically proven to be 

effective. This includes reviewing the medical literature and evaluating the quality of 

studies (e.g. double blind, control groups). While this has not been done in all fields 

of medicine, it does, for some fields, provide standards of practice, which can be 

translated into quality indicators. For example, Cash and Chey (2004) found that for 

the diagnosis of irritable bowel syndrome that: 

Current evidence does not support the performance of exhaustive testing to 

exclude organic diseases in patients fulfilling symptom-based IBS criteria 

without alarm features. 

 

Thus a web page, which recommends diagnostic testing prior to symptom-based 

diagnosis (in the absence of alarm features), can be determined to be less reliable than 

one which recommends symptom-based treatment for a reasonable period of time 

prior to using diagnostic tests. 

 Below we restate the problem and discuss some additional simplifying 

assumptions. 
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1.1 The Problem 

 

 The problem or task at hand is to develop an automatic measure of the 

reliability of web pages in the medical domain. More specifically, given a web page, 

which is the result of a user query on a medical topic, the goal is to provide an 

estimate of the extent to which the information can be trusted.  

 Here we note that an automatic estimate of the reliability is the best that can 

be obtained. For any given page it may be difficult or impossible for humans to 

determine an absolute measure of reliability. Test studies conducted for my proposal 

showed that in some cases information on web pages cannot be verified by humans 

(in finite time), so an informed estimate is often the best that can be hoped for. The 

purpose of our measure is not to deal in absolutes, but rather to provide quick 

consistent information that will help humans critically evaluate information before 

they consume it. 

1.2 Simplifying Assumptions 

 

In this section we discuss the simplifying assumptions that focus the work 

presented in this thesis. We will focus on consumer, rather than professional, users of 

health information. We will limit our work to text and use web pages as the 

fundamental unit of information, rather than web sites. And we will make use of the 

Google search engine to retrieve pages from the Web. 
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1.2.1 Consumer Users 

 

Since Google indexes some, but not all medical databases and access to many 

medical journal articles is limited to subscribers, we will focus primarily on consumer 

users, rather than on health care professionals. We note that there is a wide range of 

consumers in terms of knowledge, background and interests. For example, a worried 

parent who is only an occasional user of the web (semi-computer-literate) might look 

for information on their child's fever and require fairly simple straight-forward 

information, on the other hand, a computer-literate parent whose child has 

adrenoleukodistrophy may be interested in reading medical articles describing studies 

and outcome for the latest treatment.  

 We assume that the user has a general information need matching the query. 

We will assume that the query is about a specific health condition or treatment. This 

provides a broad definition of the relevance of a given page to the query. How to 

assess the relevance of a page and how to assess the user's true information need 

based on a given query are research topics in their own right and beyond our scope 

here. 

1.2.2 Text 

 

 In addition, we will not be concerned about the accessibility of the web page, 

the time it takes to load, its design qualities, or the ease of navigation. 

 We will limit our processing to text, including html markup, on the page and 

inlinks (the URLs of other pages linking to the given page). We will not be concerned 
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with images, audio, or video, beyond references to them, which appear in the text of 

markup of a page. 

 Some medical pages do have images (e.g. anatomical diagrams) and a few 

have video (e.g. video of an operation), it is not clear that there is anything to be 

gained by processing these beyond noting the links to them on the page. The cost of 

additional processing would be significant. 

1.2.3 Google 

 

 We will assume that all queries are submitted to the Google search engine. 

The choice of Google was made for several reasons.  

1. Google is currently the most popular search engine (Sullivan 2004). 

2. In test studies I conducted in during the preparation of my proposal, I found 

that Google performed as well or better than other search engines in returning 

relevant documents on a variety of queries. I did not find that results were 

improved by using metasearch engines. 

3. Google has a relatively easy to use API, which enables automatic extraction of 

pages and inlink information. 

1.2.4 Web Page Versus Web Site 

 

 When Google returns search results they consist of links to specific web 

pages. There is a fundamental question of what is the appropriate unit of analysis: the 

web page or the entire site of which the page is a part. In particular, Amento, Terveen, 

and Hill (2000), argue that the site is the correct unit to consider, at least in the 
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domain of popular entertainment. While I seriously considered adopting their 

approach, in practice I found that pages are a more workable unit and a fair amount of 

information about the site can be extracted from the page. For example, "About Us," 

"Privacy Policy," and "Disclaimer," which are pages located elsewhere on the site are 

generally linked to the given page and it is hypothesized that the presence or absence 

of these links is a useful feature for reliability estimations. A reasonable direction for 

future work to refine the system might include crawling the site where the page is 

located and examining related pages for such things as bias in the "About Us" or 

completeness of the information (e.g. if the page we are looking at only concerns 

treatment, are there other pages to explain diagnosis). 

In summary, we have a consumer user typing a simple medical query to the 

Google search engine. Most if not all of the pages returned will be relevant to the 

query. The consumer is interested in whether or not the information on any given 

page is reliable. Further the consumer would prefer to have the search results include 

a reliability ranking and a facility to be able to sort the search results by reliability. 

(Also the consumer would like to be able to understand why a given page received its 

ranking, so there needs to be a link to human-readable output of the ranking system.)  

1.3 Why This Work Is Necessary 

 

In the section on Related Work we will discuss in detail what is currently 

available to help consumers determine the reliability of medical information on the 

Web. In short, there is a clear need for an automated tool to aid consumers in making 

reliability determinations.  
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For example, when creating my IBS Corpus (discussed in Data section), the 

ninth ranked page returned by Google, for the query “irritable bowel syndrome” was 

a commercial page published by Parkview Publishing to sell books by Dr. Salt about 

the mind-body connection to irritable bowel syndrome. This page was annotated as 

“possibly unreliable” (see Definitions section), because its primary purpose is 

commercial and much of the information is incomplete, unless the books are 

purchased.  

Since the page appears in the first ten pages returned by Google, consumers 

might be mislead into thinking that the page is reliable. My system considers this 

page unreliable, which would hopefully cause a consumer to investigate further 

before accepting the information on the page as true.  

1.4 Contributions of This Work 

 

The contributions of this work fall into four areas:  

1. Extending previous work, particularly in the areas of features, algorithms, size 

of the data set, learning techniques applied.  

2. Classification of medical web pages by type in the context of automatic 

processing for reliability classification. 

3. Better understanding of the difficulty of the task and the size and type of 

feature set to approach it with. 

4. Applying a range of machine learning techniques to the problems of 

classifying web pages by type and reliability. 
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This work extends previous work on reliability of information in the medical 

domain (Price 1999, Fallis and Frické 2002, Aphinyanaphongs and Aliferis 2003, T. 

Tang et al. 2004) and of reliability or quality of information on the web in general 

(Zhu and Gauch 2000, Amento, Terveen, and Hill 2000, R. Tang et al. 2003, Ng et al. 

2003). Particularly compared to work in the medical domain, I have used a larger and 

more sophisticated feature set, more robust learning algorithms, and automated the 

system to a greater degree, producing promising results. 

 Through the semantic spaces created by applying Latent Semantic Analysis 

(see Section on Machine Learning) to the MMED corpus
1
, I have informed my 

features with a much larger data set than has been used in previous work on reliability 

on the Web. I view one of the major flaws in most of the work in this area to be the 

small sizes of the data sets. In the future, I expect to tag a much larger portion of my 

MMED corpus to remedy this flaw in the extent to which it affects my work. 

 This work contributes to our knowledge which features are truly appropriate 

to determine reliability on the Web, through empirical testing and principled feature 

selection. I have shown that, while size of a good feature set for this task is an open 

question; it may be larger that has been suggested in the medical literature 

(Eysenbach et al. 2002). 

                                                
1
 The MMED corpus consists of 1000 web pages, 100 from each of ten different 

medical queries. The creation of the corpus and the semantic spaces are discussed in 

detail in the Data section. 
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 To my knowledge, no one else has yet classified web pages by type in this 

context. The idea that type can aid in the task of reliability classification is also a 

contribution of this work. 

1.5 Summary 

 

In this work, we develop a system to determine the reliability of medical 

information on web pages. 

The rest of the thesis will cover the current state of reliability on the web, 

definitions of reliability and page types, and related work as introductory material. 

Followed by a description of the data, annotation, features, an overview of the 

system, and an introduction to machine learning algorithms used in this work. We 

will conclude with a summary of results and future work. 
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2 RELIABILITY 

 

In this chapter we will provide an overview of reliability criteria for print 

media and discuss to what extent these criteria translate to the Web. We will conclude 

by discussing the current state of reliability on the Web. 

2.1 Reliability Before the World Wide Web 

 

Whether or not information is reliable, whether it can be trusted, has been 

considered for centuries by librarians, scholars, philosophers and scientists among 

others. Library and information scientists, in particular, have developed a generally 

accepted set of standards for the reliability of print information. While different 

authors may frame these standard in slightly different ways, a survey of the literature 

indicates that the standards fall into certain basic categories: 

• Accuracy 

• Authority 

• Coverage 

• Currency 

• Objectivity  

• Support 

 

Accuracy means the extent to which information is true, correct and error free. 

Most reputable print publishers have non-fiction writing fact-checked before it is 

published.  

Authority speaks to the credentials of the authors of the material. For example, 

does the author have knowledge of, or expertise in, the subject area they are writing 

about? Are they are a recognized authority on the subject? Again, most reputable 
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print publisher will consider an author’s credentials before agreeing to publish their 

work. 

Coverage refers to the scope and depth of the writing. Implicit in coverage is 

the intended audience, which determines what level of coverage is necessary for the 

writing to be reliable.  

Currency refers to whether the material is up to date. How we interpret “up to 

date” will depend on the nature of the material. For example, if we are looking for 

information about how to treat a child’s fever at home, information published 10 

years ago and information published yesterday might be equally reliable, because 

generally accepted practices have not change significantly during that time. However, 

if our query is in an area where there is ongoing research, something published last 

week may be out of date.   

Objectivity means that the writing is balanced and free from the author’s 

personal bias. One can debate the extent to which objectivity is possible, but we can 

look for balanced writing that present all sides of an issue and does not omit 

inconvenient facts. Here one might also ask if there is sufficient transparency so that 

we can assess the author’s inevitable bias. For example, does the author of the study 

we are reading about the effectiveness of a certain drug let us know whether the 

funding for the study came from the National Institutes of Health or from the 

company that makes the drug? 

Support is sometimes considered a subcategory of accuracy: is the information 

supported by arguments and evidence, are references cited where appropriate. 
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Printed material generally costs money to publish. This restricts who has 

access to the means of publication and what is ultimately published. In most cases the 

person or entity bearing the costs of publication has an interest in producing material 

with a certain level of quality or reliability. There are often editors, reviewers, fact 

checkers and publishers who exert some level of quality control. There are also 

standards of what is to be included with the publication, such as identification of the 

author and publisher, copyright information, and publication date. These standards 

provide means to check some of the quality criteria listed above.  

2.1.1 Issues Beyond Our Scope 

 

Some issues, which are beyond our scope here include: 

1. Authentication of documents on the web. For example, there are archives, 

which post digital images of original sources, such as letters or 

contemporaneous accounts of events. Authentication of these documents is a 

research area in its own right and would require techniques tailored to the 

documents in question and likely serious study by experts. The extent to 

which this process or parts of the process might be successfully automated is a 

very interesting question, but well beyond the scope of the current project. 

2. Satire, spoofs and deliberate attempts at falsification on the Web do occur, 

although fortunately not generally in the top Google hits in the medical 

domain. The verification portion of this project, which is currently planned for 

future work, would have potential to identify some of these web pages.  
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2.2 Is the Web Any Different? 

 

 Now that we have an understanding of the traditional quality (reliability) 

indicators for print media, the question arises: can these indicators be transferred 

directly to determine reliability of information on the Web? To answer this, we first 

consider some of the differences between print media and the web. 

 The Web provides us with a vast, ever growing and changing, semi-structured 

and partially searchable database of information. There is more information available 

than anyone can possibly consume, so searching and filtering mechanisms are 

essential. There are two issues with the current state-of-the-art in search technology 

that are relevant here: first, not all of the Web is indexed by any available search 

engine, so the information we desire may not be reachable through searching and 

second, to varying degrees search engines may build popularity of a page into their 

search algorithms (e.g. Google’s PageRank). While including the popularity of a page 

in the ranking algorithm for returned results may be a valid and effective 

methodology, it is an open question to what extent popularity correlates with 

reliability. 

 One of the main differences between the Web and print media is that virtually 

anyone can publish anything on the Web, while the costs associated with print media 

limit who can publish and provide incentive for some level of quality control. There 

are certainly many web sites where some quality control exists to protect the 

reputation of the publisher (e.g. web sites of government agencies, large corporations, 

or hospitals) or which are online versions of printed material (e.g. online peer-
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reviewed journals or newspapers). However, there are a tremendous number of web 

sites created by individuals and others where there is no quality control. 

  On the other hand, the Web has some potential advantages over print media. 

In particular, electronic documents can be downloaded and machine-processed, the 

document structure (HTML and XML) of the pages can provide additional 

information, and the Web graph, with its associated topology, can also provide 

information beyond what is written on the page. That we can download and 

automatically process Web documents has made feasible the work described in this 

thesis; such tasks as counting the occurrences of, say, the word “miracle” is time-

consuming and often inaccurate when done manually on a printed document, but 

accurate and almost instantaneous when done automatically on an electronic 

document. The HTML (or XML) structure of web documents provides additional aids 

to automatic processing and may contain metadata to provide a better understanding 

of the document. Finally, the topology of the sub-graph of the Web surrounding a 

page or site provides not only additional structure to the document, but a built-in 

citation index of sorts and information about the social network of the author.  

 Having seen that there are some advantages and disadvantages to information 

on the Web, we return to our question about the applicability of traditional quality 

criteria to information on the Web. Some insight was provided by Fallis and Frické 

(2002) in their 2002 study (also discussed in the Related Work section) of quality 

indicators for web pages on the treatment of fever in children. They found that the top 

indicators of the accuracy of the information on the pages they studied were: the 
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domain is “.org,” an HonCode logo was displayed (see below for discussion of 

HonCode), and copyright claimed. Perhaps more interesting is which indicators did 

not correlate with accuracy: the author having medical credentials, a date the material 

was written, citations of medical literature, and the lack of advertising on the page. 

There are a couple of problems with their study, most crucially the small size of the 

study (100 web pages), so indicators such as citations of medical literature did not 

occur in sufficient numbers to draw any firm conclusions. Also the relative stability 

of the information on their topic may make indicators such as the date the material 

was written less relevant than it would be for another topic. Nevertheless, their study 

points out two key issues: the indicators of quality for print media may not transfer 

directly to the web, and before any definitive conclusions can be reached, indicators 

need to be tested empirically on a larger corpus of web pages. 

2.3 State of the Art: Reliability on the Web 

 

 The current state-of-the-art for reliable information on the Web, from the 

information producer’s point of view, is voluntary compliance. As we noted above, 

there are some web sites where the there is some level of internal quality control, such 

as peer-reviewed online journals. There are also manually reviewed databases and 

directories, usually discipline specific, such as the Social Science Information 

Gateway SOSIG (http://www.sosig.ac.uk), whose aim is “provide a trusted source of 

selected, high quality Internet information for researchers and practitioners in the 

social sciences, business and law.” SOSIG manually selects submitted material for 

inclusion based on stated quality criteria they have developed.  
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 For a consumer looking for medical information, perhaps not in medical 

journals or databases of medical articles, there is still the question of how to tell if a 

page is reliable. Some currently available options are: 

• Look for seals of voluntary compliance to published quality criteria, 

• Check the page against quality criteria published by libraries and 

organizations, 

• Use a quality criteria checklist. 

 

There are at least three organizations that essentially accredit web sites that 

comply with their published quality criteria by allowing the site to posts their seal of 

approval or kitemark:  

• Health on the Net Foundation: HONcode (www.hon.ch)(2005). 

• The Centre for Health Information Quality: CHIQ 

(www.hfht.org/chiq)(2005). 

• American Accreditation HealthCare Commission: A.D.A.M. 

(www.urac.org) (2005). 

 

While these can be good indicators that the publisher or the site is making an attempt 

to provide quality information, they do not necessarily ensure that the information 

will meet the standards of Evidence-Based Medicine and may be misused by 

publishers making a deliberate attempt to mislead consumers. 

 Checking a page against published criteria is a good first step, but it is not 

clear that all consumers will find the appropriate criteria (most university libraries 

have such a site as is discussed in the Related Work section), or have the patience to 

check the page in detail. To facilitate this process at least one organization has 

provided an online checklist that computes a reliability score automatically when the 

checklist is completed: DISCERN (www.discern.org.uk). Cooke (2001) raises 
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questions about the validity of these checklists due to the lack of structure of 

documents on the Web and whether they in fact objectively measure the quality of the 

information a page.  

2.4 Summary 

 

 We surveyed the standard criteria for determining the quality of information 

for print media and have seen that their application to the Web might require 

modifications and empirical testing. Since the Web has addition information and 

structure imposed by HTML (or XML) and the link structure, we may need to 

consider new ways to assess the quality of information on the Web. Currently, a 

consumer of health information on the web can assess the reliability of information 

by looking for evidence that the site has been accredited or by using a manual or 

semi-automatic checklist of quality criteria. Neither of these mechanisms is without 

problems and I would hypothesize that the majority of such consumers do not have 

the background or patience to complete checklists very often. This argues for an 

automated solution, such as the one described in this thesis. 
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3 DEFINITIONS 

 

 The problem is essentially learning an automatic classifier for reliable and 

unreliable web pages. The primary classification task is to classify pages based on 

their reliability. The secondary classification task is to classify pages based on their 

type (commercial, patient leaflet, links). The reason for classification by type of page 

is the hypothesis that different types of pages may need to be treated differently to 

classify them based on their reliability. For example, if the primary purpose of a page 

is to prove links to information, determining the reliability of the links page may 

require determining the reliability of the pages to which it links. For present purposes 

we may be able to avoid the necessity for crawling to the linked pages by assessing 

the reliability based on the balance of the links (e.g. a page that links to a variety of 

medical center's patient leaflets, to support groups and to drug companies is more 

likely to be reliable than one that only links to support groups). 

3.1 Reliability 

 

To estimate the reliability of Web pages I have chosen to use a five level 

scale: 

• Probably Reliable 

• Possibly Reliable 

• Unable to determine 

• Possibly Unreliable 

• Probably Unreliable 

 

We will consider each level in turn: 
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3.1.1 Probably Reliable (PrR) 

 

The information on these pages appears to be complete and correct, meeting 

the standards of evidence based medicine where appropriate. Information is presented 

in a balanced and objective manner, with the full range of options discussed (where 

appropriate). The page and author appear reputable, with no obvious conflicts of 

interest and the appropriate disclaimers, policies, contact information are present. 

Where appropriate, sources are cited. An example of a page in this category would be 

a patient leaflet from a reputable source that adheres to the standards of Evidence-

Based Medicine. 

3.1.2 Possibly Reliable (PoR) 

 

The information on the page is generally good and without obvious false or 

outdated statements, but may not be sufficiently complete and balanced or may not 

conform to evidence-based standards. An example of a page in this category would be 

a patient leaflet that contains only a brief description of diagnostic procedures or 

suggests a treatment option that is generally accepted, but not supported by evidence. 

3.1.3 Unable to determine (N) 

 

For these pages it is difficult or impossible to determine the reliability, 

generally because there is not enough information. For example, the page may be 

blank, only contain login information or be the front page of a medical journal. 
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3.1.4 Possibly Unreliable (PoU) 

 

These pages may contain some reliable information, but either have some that 

is outdated, false or misleading, or the information is sufficiently unbalanced so as to 

be somewhat misleading. An example of pages that might fall into this category is 

practitioner commercial pages, which have valid information about an illness, but 

only discuss the preferred treatment offered by the practitioner. 

3.1.5 Probably Unreliable (PrU) 

 

These pages contain false or misleading information, or present an unbalanced 

or biased viewpoint on the topic. Pages most likely to fall into this category are 

commercial and testimonial pages. 

These classes are admittedly somewhat coarse-grained and an appropriate area 

for future research would be to refine them, preferably by soliciting expert opinions. 

Since my data has tended to have relatively few clearly unreliable pages (the top 

search results from Google seem to do pretty well, see data section), for binary 

classifications of reliability and unreliability I have used only the PrR as “Reliable” 

and grouped the other four categories into “Other” and grouped PoU and PrU as 

“Unreliable” and the other three categories as “Other.” 

The table below (Table 1) shows the distribution of reliability classes, by the 

number of pages in each class, in the two human annotated corpora; see the Data 

section for a detailed description of the corpora and the Annotation section for a 

description of the annotations. 
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Table 1. Distribution of Reliability  

Classes in IBS and MMED100 Corpora. 

 IBS MMED100 

Total 70 100 

PrR 24 36 

PoR 21 35 

N 12 10 

PoU 7 14 

PrU 6 5 

 

3.2 Types of Pages 

 

 There are seven main types of pages that frequently come up in search results 

for queries in the medical domain: Commercial, Patient Leaflet, FAQs, Links, 

Medical Articles, Support, and Testimonials. We can refine these categories to 

include Practitioner Consumer pages as a subset of Commercial pages, and 

Practitioner and Consumer Medical articles as subsets of Medical Articles. There are 

also pages, which are not relevant, or do not contain sufficient information to make a 

determination (Practitioner Medical Information and Medical Journal front pages). 

Below we discuss each of these types. 

3.2.1 Commercial (C) 

 

The primary purpose of these pages is to sell something, for example, pages 

about an ailment sponsored by a drug or treatment or equipment company, which 

sells a drug to treat it. Given the desire to sell, these pages are generally of 

questionable reliability and often do not present complete or balanced information. 

Practitioner pages with no real (substantial) information, which are designed to get 

people to make an appointment, as opposed to patient leaflets (designed to 
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supplement information that patients receive in the office or clinic), might also fall 

into this category or might best be treated separately (see below). 

3.2.2 Practitioner Commercial (PC) 

 

These pages are midway between patient leaflets and commercial pages. They 

provide information about a specific treatment, illness, or condition as a way of 

generating patients or clients for the practitioner. Practitioners may be individual 

medical professionals, therapists, or a clinic, hospital or medical center. The key point 

is that while they may provide valid medical information, it is often unbalanced or 

incomplete. 

3.2.3 Links (L) 

 

The primary purpose of these pages is to provide links to other pages or sites, 

which will provide information about a certain topic. These may or may not be 

annotated, and the degree of annotation may vary considerably. The reliability of 

these pages depends on the reliability of the pages they link to (possibly also on the 

text in the annotations). 

3.2.4 Patient Leaflet, Brochure, or Fact Sheet (P) 

 

The primary purpose of these pages is to provide information to patients about 

a specific illness or medical condition. Generally, these pages will be produced by a 

clinic, medical center, physician, or government agency, etc. The purpose is to 

provide information. This class needs to be distinguished from medical articles, 

especially in encyclopedias or the Merck Manual, etc. These pages will tend to have 
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headings like: symptoms, diagnosis, treatment, etc. The reliability of these pages is 

based on their content and determined by factors including Evidence-Based 

Medicine, completeness, and the presence of incorrect or outdated information. These 

pages may be difficult to distinguish from FAQs and the two classes might be 

collapsed into one. 

3.2.5 Frequently Asked Questions (FAQ) 

 

The primary purpose of these pages is to answer "frequently asked questions" 

about an illness or condition. They tend to be more consumer-oriented and often 

written by lay people. This category may need to be merged with patient leaflets for 

content, but format may or may not be different (e.g. some patient leaflets have 

headings in the form of questions).  In some cases these pages can be quite different 

than patient leaflets, because they may contain answers to very specific questions 

about the details of an illness or treatment without providing much general 

information. The reliability of these pages is based on their content and determined by 

factors including Evidence-Based Medicine and completeness. 

3.2.6 Medical Article (MA) 

 

The primary purpose of these pages is to discuss a specific aspect of a specific 

illness or condition, or a specific illness or condition. This really breaks into two 

categories: articles aimed at consumers and articles aimed at health practitioners. 

Articles aimed at health practitioners, particularly doctors, may be scientific research 

articles. The reliability of these pages is based on their content and determined by 
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factors including Evidence Based Medicine, completeness, and the presence of 

incorrect or outdated information. Note: Medline search results may be considered a 

links page to medical articles. 

3.2.7 Consumer Medical Article (CMA) 

 

These pages are medical articles aimed at consumers and can include articles 

in the non-medical media. It may be useful to distinguish these from articles aimed at 

practitioners because the language is less formal and technical. 

3.2.8 Practitioner Medical Article (PMA) 

 

These pages are medical article aimed at practitioners, and may include 

medical journal articles. 

3.2.9 Testimonial (T) 

 

The primary purpose of these pages is to provide testimonial(s) of individuals 

about their experience with an illness, condition, or treatment. While individuals may 

be considered reliable when discussing their own personal experiences, these pages 

tend to be unreliable, because they are generally not objective or balanced. There is a 

tendency for readers to generalize from very specific information or experiences 

provided by the testimonial, which can be misleading. These are good examples of 

the need to implement a means of verification. 
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3.2.10 Support (S) 

 

The primary purpose of these pages is to provide support of sufferers (or their 

loved ones or care-givers) of a particular illness or condition. The pages may contain 

information, similar to that found in a patient leaflet; links to other sites, similar to a 

links page; and testimonials. In addition they may contain facilities such as chat 

rooms, newsletters, and email lists. Activities may include lobbying for funding for 

research, generally put up by individuals or non-profit organizations. For reliability, 

one may need to look at the agenda of the authors or group. It is often in their interest 

(politically) to overstate the problem and/make things out to be worse then they are. 

3.2.11 Not Relevant (N) 

 

These pages are blank or not relevant and include: login pages, conditions of 

use pages, and medical journal front pages. 

3.2.12 Practitioner Medical Information (PMI) 

 

These are pages that contain very limited and specific information for medical 

practitioners or scientists. For example, a page containing only a list of genes 

associated with a certain disease, or symptoms of a disease without other information.  

3.2.13 Medical Journal (MJ) 

 

These pages are differentiated from a medical article, which contains 

information. These pages are front pages of a medical journals, or grant site, which 

may require search and paying for the desired information. 
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 These categories were created based on the exploration of my data, so it is 

possible that in the future additional categories would need to be added. Another 

option that should be explored in the future is how to best collapse these into fewer 

categories. The bulk of the pages in my corpora fall into the Patient Leaflets, Links 

and Commercial classes, so I have focused on these for my binary classification tasks.  

  

Table 2. Distribution of Major Page Types  

in the IBS and MMED100 Corpora. 

 

 

 

 

The table above (Table 2) shows the distribution of page type classes in the 

two human-annotated corpora. See the Data section for a detailed description of the 

corpora and the Annotation section for a description of the annotations. 

 

 

 

 

 

 

 

 

 

 IBS MMED100 

Total 70 100 

Commercial 21 6 

Link 13 9 

Patient Leaflet 19 34 
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4 RELATED WORK 

 

 Researchers from a variety of fields are interested in the quality of information 

on the Web. For Library and Information Science this is a natural extension of 

concerns about quality of printed information; for Medicine and Law, in research, 

teaching, and dealing with patients and clients, quality of information plays a crucial 

role and interest in this area naturally extends from interest in the quality of print 

sources; for E-Commerce and the new field of Information Quality, the focus has 

been on designing competitive business web pages (if consumers get incorrect or 

contradictory information from a business site, it lowers their trust in the company, 

similarly if they are unable to get desired information due to design flaws); for 

Communication and Content Analysis the Web provides another form of 

communication or content to analyze and their interest in quality is primarily as one 

factor in a larger analysis; for Psychology the primary area of interest seems to be 

how users perceive information and interface quality; for Computer Science several 

areas, primarily with the field of Artificial Intelligence, are interested in the quality on 

information on the Web. 

 In Data Bases the Web can be viewed as a semi-structured or unstructured 

database. The issue of quality of information generally concerns redundant, missing 

or incorrect data within the database. 

 The field of Question Answering is currently of great interest to defense and 

intelligence arms of government, as well as for its possible commercial value, making 

it a hot and well funded area of research. Much progress has been made in retrieving 
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answers to questions in various domains, so now some research is moving toward 

retrieving a "correct" answer. Similarly in the area of Information Retrieval, great 

strides have been made in our ability retrieve documents relevant to a web query and 

there is dawning recognition that relevance may not be sufficient and additional 

filtering by level of quality may also be necessary. 

 Researchers in Natural Language Processing have been looking at subjectivity 

and opinion in various domains (e.g. review mining, new articles). 

 In all of these fields, researchers have defined information quality and its 

various aspects in accordance with their perspectives, goals and interest. While 

definitions differ, often the vocabulary used is the same, so we must take care to 

clarify our use of seemingly obvious words, e.g. quality, accuracy, and be aware that 

out definitions may not translate directly to other bodies or work or fields. 

 Here we will focus on the work most relevant to this thesis coming from three 

main research areas: Library and Information Science, Medicine and Computer 

Science.  

4.1 Library and Information Science 

 

 In library and information science there is a large body of work. I will not 

cover work that focuses on the design aspects, or accessibility of Web pages. I will 

also not focus on studies of users: how they think and behave or what they want. 

Rather I will focus on literature that covers the quality or reliability of information on 

the Web and how to assess it. Because of the volume of work in this area I will not 



 30 

endeavor to make a complete list, but rather to highlight some important and useful 

sources. 

 There are two books I found useful: Web Wisdom (Alexander and Tate 1999) 

and A Guide to Finding Quality Information on the Internet (Cooke 2001). Web 

Wisdom is a book aimed at semi-web-literate consumers and designers. Alexander 

and Tate break down quality critera by type of page (advocacy, business, 

informational, news, personal, and entertainment), providing discussion and 

checklists for each type. Their work supports one of my hypotheses that the system 

may need to use different types of processing for different types of pages and that it 

would be useful to be able to classify pages by type. 

Cooke's book is aimed at more experienced and computer-savvy researchers 

and is more academic in flavor. In addition to quality critera and checklists, she 

provides information on information retrieval and search engines. She gives examples 

of gateways and virtual libraries where humans have selected material for inclusion 

based on quality and whose contents might not be indexed by major search engines. 

Her examples and discussion are more sophisticated than Web Wisdom. 

There are a number of bibliographies on the Web prepared by librarians, some 

annotated and some not, of resources and literature about information quality on the 

web. Two examples of these are Validating Web Sites: A Webliography in Progress 

(Kilborn 2004) and Bibliography on Evaluating Web Information (Auer 2003). 

Kilborn's bibliography is annotated, while Auer's is not. Auer provides links to 
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approximately 75 papers and resources; Kilborn provides links or citations to about 

95 sources. 

Two early and often cited papers are “Evaluating Quality on the Net” (Tillman 

1995-2003) and “Testing the Surf: Criteria for Evaluating Internet Information 

Resources” (Smith 1997). Both provide arguments for the need to evaluate the quality 

of information on the web, criteria for evaluation and information about other 

resources. Another historical paper is “Measuring the Quality of the Data: Report on 

the Fourth Annual SCOUG Retreat” (Basch 1990). This is a report on discussions of 

information quality at the Southern California Online User's Group retreat in 1990. 

While their focus is the quality of information in databases, their detailed criteria for 

quality can easily be applied to the Web. 

In an article from 2001 entitled “Charlatans, Leeches, and Old Wives: 

Medical Misinformation,” Susan Detwiler (2001) details some of the problems with 

medical misinformation on the Web and how to deal with them. She frames her 

quality criteria with the traditional journalist questions: who, what, why, where, when 

and how. 

In addition to making use of the quality criteria from Detwiler, Smith, and 

Alexander and Tate, discussed above, I surveyed the library Web sites with criteria 

for the quality of information on the Web from eight university libraries: 

• Duke University (Cramer 2004) 

• Truman State University (Truman State University, undated) 

• New Mexico State University (Beck 2005) 

• University of North Carolina at Chapel Hill (Mohanty et al. 2004) 

• The Sheridan Libraries of The Johns Hopkins University (Kirk 1996) 

• Cornell University (Ormondroyd, Engle, and Cosgrave 2004) 



 32 

• University of California at Berkeley  (Barker 2005) 

• Virginia Tech (Sebek 2004) 

 

Most university libraries have such a page, so my search was meant to be 

representative, rather than exhaustive. Of the university library sites, the one at UC 

Berkeley was the most comprehensive and useful. Other sources of criteria were: 

• FNO: From Now On, The Educational Technology Journal (McKenzie 1997) 

• Virtual Salt: Evaluating Internet Research Sources (Harris 1997) 

• The Virtual Chase: Legal Research on the Internet (Virtual Chase, 1996) 

 

An additional source worth noting is Lynne Fox's (2001) page at the University of 

Colorado Health Sciences Center, which deals specifically with evaluating medical 

resources on the web, for both physicians and consumers. 

  My compilation and distillation of the quality criteria found on these pages is 

discussed in the features section. 

4.2 Work in the Medical Domain 

 

There is substantial literature in the medical domain discussing the quality of 

medical information available on the Web. Many medical professionals have 

expressed concern about the questionable information their patients find on-line. The 

consequences of incomplete or misleading medical information on the Web can range 

from an annoyance to practitioners, who must take time to correct misconceptions, to 

serious health consequences (possibly even death) for consumers who follow 

incorrect advice found on-line.  

One of the first and often cited studies was done by Impicciatore et al. in 1997 

(1997). In order to assess the reliability of consumer health information on the Web, 
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they study the information available to parents about fever in children. Fever in 

children is a common condition with a generally accepted treatment protocol, which 

has been established for some time. They used the query: "fever management" and 

"child" and "parent information" (in English, French, Spanish, Italian, and German), 

submitted to the Yahoo and Excite search engines. Forty-one pages were retrieved 

and analyzed manually. To assess the reliability and completeness of the information, 

they looked at the minimum temperature of a fever, where on the body to take the 

temperature, treatment, and when a doctor should be contacted. They found that "only 

four web pages adhered closely to the main recommendations in the guidelines."  

Impicciatore et al. gives the flavor of many similar studies, which have been 

conducted since, often by medical specialists in their area of specialty. Most involve 

retrieving a manually analyzing a relatively small number of Web pages and 

performing a statistical analysis. 

In 2002, Eysenbach et al. (2002) conducted a carefully designed review of 

studies assessing the quality of consumer health information on the web. After doing 

a broad search for studies and screening 7830 citations, they found 79 studies meeting 

their inclusion criteria (essentially appropriate scope and quantitative analysis). All 

studies were analyzed and rated by two reviewers. They found that 70% of the studies 

concluded that reliability of medical information on the Web is a problem.  

Eysenbach et al. also provided an overview of quality criteria used in the 

studies. In addition to accuracy, completeness, readability, level and design, most of 
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the criteria concerned "transparency," such as authorship, attribution, disclosure, and 

currency.  

More directly related to the work reported in this thesis are the Master's Thesis 

and AMIA paper based on it by Susan L. Price from 1999 (Price 1999, Price and 

Hersh 1999). Price developed a system that takes a user query, removes stop words 

and then searches using Excite and Altavista. It retrieves the 20 top links from each, 

removing duplicates and bad links. The page is then analyzed automatically to detect 

as many characteristics as possible, a weighted sum is computed and the pages are 

ranked. She also intended to download the contents of the pages that the given page 

links to and compute the average of their ranks, however it is not clear to what extent 

this feature was actually implemented. It was also her intent to compute the weights 

empirically, however in her thesis the weights were assigned manually. For 

evaluation she used 48 web pages from nine different medical topics, which had been 

labeled by the investigator as desirable or undesirable. She  "successfully separated 

the desirable from the undesirable pages" (Price and Hersh 1999). Her quality criteria 

were relevance, credibility, bias, content, currency, and the value of the links on the 

page. It appears that she used approximately 30 features, 18 of which closely overlap 

my feature set. The small size of her study, along with lack empirical analysis of the 

quality of her feature set and manually assigned feature weights, are serious 

shortcomings of this work. 

Price's idea of computing an average link score by rating the pages to which 

the current pages is linked is a good one any would be worth pursuing in future work. 
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One study that does empirically test several of the proposed indicators of 

accuracy in the medical domain was done by Fallis and Frické in 2002. They chose to 

follow up on the results of Impicciatore et al. and look at fever in children with the 

query: "fever" and "treatment" and "child" (where the "and" is Boolean). They used 

the Yahoo, Altavista, and Google search engines to find 100 Web sites. They created 

an instrument with 25 questions on 5 topics, which was checked by a doctor, then 

manually compared the information on the sites to recommendations of authoritative 

sources to rate the reliability of the pages. They used 11 indicators of accuracy based 

on published literature about the quality of health information on the Web: 

1. domain (commercial, educational, organization) 

2. currency (8 indicators) 

3. HONcode displayed 

4. Advertising displayed 

5. Authorship (author identified, author identified as MD) 

6. Copyright claimed 

7. Contact info provided 

8. Spelling (3 indicators) 

9. Exclamation points (3 indicators) 

10. References (cite peer reviewed medical literature) 

11. Inlinks (>1000 to main page, >1000 to treatment page) 

 

As with the annotation for quality, annotation for the indicators was done by 

two raters and reliability was measured using Cohen's kappa statistic (good agreement 

is claimed, but specific kappas are not reported).  

They performed a contingency table analysis and correlations between 

indicators and accuracy using Chi-square Probability. They found three of the 

indicators correlated with accuracy: HONcode logo displayed, copyright claimed and 

organization domain. Possibly more interesting are some of the indicators which did 
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not correlate with accuracy: author identified as MD, presence of a date, presence of 

advertising and presence of citations of peer reviewed medical literature. In the case 

of citations of peer reviewed medical literature, there were not enough examples in 

their sample to draw any real conclusions. The absence of an indicator of the date the 

page was written might be due to the topic, since the best information about treating 

fever in children has been fairly stable for a number of years.  

Overall, Fallis and Frické's study suggests that there are differences between 

indicators of accuracy for the Web and the traditional indicators used for print media. 

Unfortunately, the small size of the study and its limited domain may mislead us 

about the value of sparse indicators.  

In a related study Frické and Fallis (2004) applied their methodology to 

"ready reference questions" (also known as quick fact questions, which require a 

single straight-forward factual answer). The indicators that correlated with accuracy 

here included being in the top seven results returned by the search engine, having 

more than 1000 inlinks, copyright claimed, and dated this or last calendar year.  

In 2003 Aphinyanaphongs and Aliferis (2003) reported on a similar study to 

the work presented here. They collected medical journal articles in the area of internal 

medicine and used ratings by the American College of Physicians Journal Club to 

create a gold standard of quality articles. Their corpus consisted of 396 high quality 

articles in the treatment class, and 15407 articles which were either lower quality of 

not in the treatment class. Their preprocessing included removing stop words, 

stemming, tagging mesh terms, and replacing punctuation with '_'. They calculated 
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raw frequencies of terms for input into the Naive Bayes and Boostexter algorithms, 

while the input features of other algorithms were terms weighted by log frequency 

with redundancy. They compared Linear and Polynomial SVMs, Naive Bayes, and 

two Boost algorithms to classify the articles as higher or lower quality. They found 

that Polynomial SVMs preformed slightly better than Linear SVM and that SVMs in 

general outperformed the other algorithms. Their precision-recall curve for the 

Polynomial SVM shows that at recall 0.2, precision is 0.68; at recall 0.5, precision is 

approximately 0.46; and at recall 0.8, precision is 0.24. While the precision-recall 

results are not stellar, it is important to note the difficulties of classification when the 

classes are skewed. In their case the high quality articles constitute only about 2.5 

percent to the corpus.  

Aphinyanaphongs and Aliferis' study differs from mine in both domain and 

feature set. Medical articles tend to be well-formed text with many of the standard 

criteria for quality in print media in evidence (e.g. author, date, references cited). In 

contrast, Web pages are often not well formed and do not necessarily contain these 

apparent quality markers. On the other hand, their corpus does not have the link 

topology present on the Web. Their feature set is primarily the set terms in the 

documents, while mine is targeted at specific terms, html tags and information about 

the link structure. The use of weighted terms as features is incorporated into my 

system though the use of features based on semantic similarity computed by LSA. 

In tangentially related work, an Australian group (Tang et al. 2004) used 

Evidence-Based Medicine to rate the quality of advice on depression retrieved by 
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search engines. They compared Google with domain-specific search engines and 

found that Google returned more relevant results, but of a lower quality then domain-

specific search engines. This provides confirmation that the pages returned by Google 

to a given query in the medical domain is likely to vary in quality and could make use 

of a reliability filter. It also shows that domain specific search engines might be 

sources of quality information for constructing a gold standard or to be used for 

cluster seeding. 

Two members of this group did a cross sectional survey of the quality of 

information available on depression on 21 web sites (Griffiths and Christensen 2000). 

They found that "currently popular criteria for evaluating the quality of websites were 

not indicators of content quality, but sites with an editorial board and sites owned by 

organizations produced higher quality sites than others." While their study is of 

limited size and domain, it points to the need for further analysis of the generally 

accepted quality criteria for the medical domain of the Web.  

4.3 Work by Computer Scientists on Information Quality in Other Domains 

 

Amento, Terveen, and Hill (2000) were interested in exploring the question of 

whether link-based metrics of authority correlate with human judgments of quality. 

They used the Yahoo Directory to obtain five sets of popular entertainment sites. 

Human annotators selected the 15 "best" sites per topic, where "best" is defined as 

sites that "gave the most useful and comprehensive overview for someone wanting to 

learn about the topic." In addition to some text-based metrics, they used Kleinberg's 

Hub Score and Authority Score (Kleinberg 1997), Google's PageRank, the number of 
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inlinks and the number of outlinks. They found that, on average, the majority of 

annotators rated about 30% of the sites as good. They computed precision for each of 

their metrics individually by computing how many of the top five (or 10) sites in its 

ranking were classified as good by the humans. They found that the number of inlinks 

to the site, Kleinberg's Authority, PageRank, the number of pages on the site, and the 

number of images on the site, consistently outperformed the other, mostly text-based 

metrics. In addition they found no significant differences between the performance of 

inlinks, authority, or PageRank. They also found that their metrics worked better at 

the site level than at the page level, indicating that for link-based metrics, the site is 

the appropriate unit. 

Due to the difference between the domains of medicine and popular 

entertainment, it is not clear that these results will generalize. The quality of web sites 

for Smashing Pumpkins and Buffy the Vampire Slayer, as rated by college students, 

and the quality of medical web sites, assessed for best medical practices, are quite 

different things. There is also reason to expect that the topology of the web subgraphs 

around entertainment and medical sites is quite different (e.g. the number of inlinks 

tends to be much larger for entertainment sites). Their methodology for computing 

precision is aimed primarily at comparing their metrics, and so is not directly 

comparable to the precision of machine learning algorithms on my classification 

tasks. Their precision measures how many of the top five or ten sites ranked by a 

given metric are also ranked as good by the human raters. Averaging across their five 

topics, their best precision is 0.76 for the number of inlinks to a site. 
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One important contribution that bears further scrutiny is using the site, rather 

than the page, as the basic unit of analysis. I have endeavored to get around this, at 

least in part, by analyzing the outlinks and anchor text on each page. However, a 

logical next step would be to implement their algorithm and test whether site level 

analysis improves my results. 

As part of a larger project to improve search effectiveness, Zhu and Gauch 

(2000), developed a quality metric for Web pages. They surveyed the critera used by 

Web site ranking services and implemented the six that were most widely used and 

easily implemented:  

• Currency: last modified date 

• Availability: ratio of broken to total links 

• Information-to-noise ratio: length of document after preprocessing 

• Authority: ranking from Yahoo Internet Life (if available) 

• Popularity: inlinks from Altavista 

• Cohesiveness: applied vector space and web ontology methods previous 

developed by their research group 

 

They evaluated their metrics on three tasks (query document matching, query 

routing, and information fusion) using 1213 Web pages from 20 Web sites in the 

general domains of art, computing, fitness, music and general issues. Of interest here 

is the query document matching or search task. In their experiment to determine if 

centralized search could be improved by incorporating quality metrics, they tested the 

metrics individually and in combination. They normalized and weighted their metrics. 

They measured the precision of the top ten search results in terms of topic relevance, 

using search without any of their metrics incorporated as a baseline. They found that 

popularity and authority did not, by themselves, result in significant improvement in 
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precision. The greatest improvement came from combining the other four metrics, 

with precision of 0.553, a 28 percent improvement over their baseline. The best single 

metric was the information-to-noise ratio, with a precision of 0.508, a 14.7 percent 

improvement over the baseline.  

As with the work of Amento et al., the differences between their domain and 

the medical domain are significant. In the medical domain we may not want to rely on 

popularity or Yahoo Internet Life rating as quality indicators; there is a need to go 

deeper into the actual page contents.  

They do not report the results of human agreement on relevance judgments of 

the Web pages used in the experiment, which makes the overall quality of their 

results difficult to judge.  

As part of the ARDA/AQUAINT project in question answering a group of 

researchers from Rutgers, Queens College and SUNY Albany, have been studying 

quality in news articles. In Tang et al. (2003) they describe focus groups conducted 

with experts (journalists and editors) to develop quality criteria. Using their expert-

defined criteria, they annotated 1000 medium-sized news articles from the TREC 

collection for quality. They report an analysis of the inter-rater reliability using 

Principal Component Analysis. To automatically predict quality they used more than 

150 textual features as independent variables using stepwise discriminant analysis to 

analyze the results. Their correct prediction rate on the nine expert-defined categories 

of quality ranged from 55.1 to 79.0 percent. 

The nine categories were: 
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• Accuracy 

• Source Reliability 

• Objectivity 

• Depth 

• Author Credibility 

• Readability 

• Conciseness 

• Grammatical Correctness 

• Multi-view 

 

In a second paper (Ng et al. 2003) they describe in more detail some of the 

features used. These include textual features such as punctuation, symbols, length, 

key terms and part of speech. They also introduce some novel features such as a list 

of declarative verbs. They use stepwise discriminant analysis to reduce the number of 

features. In both papers, they only provide examples of the results (e.g. results for one 

or two of the quality categories).  

In more recent work (Rittman et al. 2004) they explore adjectives as 

indicators of subjectivity on the same document set. They use a subset of 

automatically derived adjectives from Weibe and found that the subset was more 

strongly correlated with subjectivity than adjectives in general. Their findings here 

are important, since one might hypothesize that the level of subjectivity is inversely 

proportional to the level of document quality. Their limited reporting of results makes 

their work difficult to compare with other studies.  

Their approach to features is similar to the one used in this thesis. However, 

due to the difference in domains, they do not use any link or citation features. Nor do 

they have the advantage of html markup for possible features. They have the 
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advantage that the articles in the news domain tend to adhere to stylistic standards, 

which make them easier to parse and more generally comparable.  

4.4 Work on Similar Classification Tasks by Computer Scientists 

 

Here we sample a few papers by computer scientists applying machine 

learning to somewhat related text classification tasks. In particular, we will look at the 

areas of review mining and topic classification. 

The problem of determining whether a review is positive or negative was 

addressed by Pang, Lee, and Vaithyanathan (2002) using machine learning 

techniques. This is a binary text classification task: good or bad. They worked in the 

movie-review domain, creating a corpus of 752 negative reviews and 1301 positive 

review. They used corpus-based techniques: unigrams, bigrams, part of speech, and 

adjectives, and applied machine learning techniques. They used Naive Bayes, 

Maximum Entropy and Support Vector Machines. To avoid the effects of skewed 

classes they used 700 positive and 700 negative examples from their corpus. They 

used three-fold cross-validation. Overall results showed that the SVM performed 

better on most feature sets. They report accuracies in the range of 77 to 83 percent. 

(Their baseline range was 50 to 69 percent, based on human performance.) 

In similar work Turney (2002) classifies reviews from Epinions in four 

domains (automobiles, banks, movies, and travel destinations) using an unsupervised 

algorithm that computes the average "semantic orientation" of the text. He reports 74 

percent accuracy on 410 reviews, ranging from 66 percent for movies to 84 percent 

for automobiles. 



 44 

In the area of topic classification Joachims (2002) applied support vector 

machines to the standard corpora (Reuters, WebDB and Ohsumed). He compared his 

SVM to Naive Bayes, Rocchio (relevance-feedback for vector space model), C4.5 

(Decision Tree), and K-NN algorithms. He used term weighting, stemming and stop-

word removal in the preprocessing phase for some of the algorithms. On all three 

corpora, linear SVM outperformed the other algorithms. (Since his results are micro-

averaged over several categories they are not directly comparable to the results in this 

thesis.) 

Spam classification is another similar task. Pantel and Lin (1998) used Naive 

Bayes to create a spam filtering system called SpamCop. They preprocess by first 

tokenizing and stemming the messages, then creating frequency tables and removing 

words that were very infrequent and words that occurred in both spam and non-spam 

with nearly equal frequency, as these are unlikely to be good indicators. They trained 

on 160 spam messages and 466 nonspam messages, collected from one of the author's 

mailbox. Testing was performed on 277 spams obtained from the Web and 346 non-

spam emails from the author's mailbox. They were "able to identify about 92 percent 

of the spams while misclassifying only about 1.16 percent of the nonspam emails." 

One interesting aspect of there study was their test of how category skewing changes 

the results. They found that having proportionately more training examples from a 

given category increases the performance on that category. 

 



 45 

5 DATA 

 

 To develop and test my system I created two main corpora: IBS and MMED. 

The IBS corpus is a small corpus created for development of the system. The MMED 

corpus is a larger corpus created primarily for testing. In addition to developing and 

testing the system, I wanted to do some initial data exploration to assess the difficulty 

and feasibility of my classification tasks and to test some hypotheses about semantic 

spaces created using LSA for the tasks. To this end I created several different 

semantic spaces. 

 The hypotheses I wanted to test were: 

1. The general assumption that paragraphs are the best units of context when 

creating a semantic space holds for web pages. 

2. The general assumption that larger document collections are better for 

creating a semantic space holds for web pages.  

3. That larger document collections provide the greatest improvement if they are 

from the same domain (e.g. web documents). 

Hypotheses, which should be tested in the future: 

1. The general assumption that approximately 300 is the best dimension for 

creating a semantic space holds for web pages. The rationale behind this 

assumption is that a large body of work across a diverse group of languages 

has shown that 300 dimensions is the right number to describe human 

language (personal communication with Peter Foltz, June 7, 2005).  
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2. That creating a large semantic space with documents in the same domain and 

then computing the vector of a new document with respect to that space will 

work as well as creating a new semantic space containing the new document.  

I will now describe each corpus and sub-corpus along with the semantic spaces I 

created from them. 

5.1 IBS Corpus 

 

 The original IBS corpus consists of the top 50 Google hits for "irritable bowel 

syndrome" downloaded automatically though the Google API on July 1, 2004. In 

addition, over the next week the inlinks for each page were automatically pulled using 

the Google API and queries of the form: "link:<url of the page>." By inlinks, I mean 

the URLs to pages, which have links on them to the given page. 

 I chose the query "irritable bowel syndrome," because after exploring a 

number of test queries, I believed that this would provide a good range of the types of 

pages which I expected to see more generally in the medical domain on the web: 

patient information from both traditional and alternative sources, support groups, 

medical articles, drug companies and quacks. I chose to collect 50 pages because I 

believed that this would be a reasonable number to be able to explore extensively and 

that there was a good chance that most if not all would be relevant.  

 After working with the data for a period of time I realized that I did not have 

enough pages that I considered clearly unreliable. I also found that it would be helpful 

to have some additional pages, which were clearly reliable in terms of Evidence 
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Based Medicine. One thought that I have not yet had time to explore was to use the 

most and least reliable pages to create seeds for clustering. 

 On September 15, 2004, I created IBSmore, which is the corpus used for all 

results reported in this paper as IBS. I searched the web for the 10 highest quality IBS 

pages I could find. For example, Evidence-Based Medicine Standards of Practice and 

Merck Manual entries. In order to find pages of low reliability, I used queried Google 

on "irritable bowel syndrome" and took the first 10 relevant "Sponsored Links." I 

pulled all 20 pages and their inlinks and added them to the original 50 documents. 

Two important things to note about this process: first, the high quality pages added 

were disproportionately from the U.K.; second, the low quality pages tend toward the 

crassly commercial and are more extreme than one would likely find in this 

proportion of the top 100 (or even 200) of a the results of a Google query for a 

medical condition. (Note: it was suggested by Roger Hartley that searching under the 

name of a medication used to treat the condition might be a more principled way to 

find lower quality pages relating to a given condition.) 

5.2 MMED Corpus 

 

 On November 5th and 8th, 2004, I automatically downloaded 1000 pages 

from Google, the top 100 for each of the following 10 queries: 

• Adrenoleukodystrophy 

• Alzheimer's 

• Endometriosis 

• Fibromyalgia 

• Obesity 

• Pancreatic cancer 

• colloidal silver 
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• irritable bowel syndrome 

• late Lyme disease 

• lower back pain 

 

 I chose the queries to provide a broad range of what might be typical queries 

for health consumers on the web and the types of pages that would result from these 

queries.  

 I chose "colloidal silver" in hopes of producing a reasonable number of 

questionable or low reliability pages based on the suggestion (in personal 

correspondence) of Lynne M. Fox, University of Colorado Health Sciences Center, 

Denison Library, who wrote and maintains "Evaluating Medical Information on the 

World Wide Web" http://denison.uchsc.edu/education/eval.html. 

 Adrenoleukodystrophy (ALD, subject of film "Lorenzo's Oil"), pancreatic 

cancer and late Lyme disease are conditions that affect a relatively small percentage 

of the population (although this is controversial about late Lyme disease), so I 

expected to find a greater amount of technical medical information and fairly close-

knit support systems. Particularly with ALD and pancreatic cancer, I expected mostly 

higher reliability information and clique-like behavior in the web graph. 

 In contrast, obesity and lower back pain affect large segments of the 

population, at least in the United States. While they are both generally well defined 

and well studied, there is a significant amount of quick-fix remedies available to 

sufferers. Alzheimer's also fits into this category, although it is somewhat less 

"epidemic." All three are recognized as serious public health issues. 
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 Endometriosis, Fibromyalgia and Irritable Bowel Syndrome (IBS) are 

somewhat controversial and difficult to diagnose. Endometriosis is probably the least 

controversial of the three and overlaps somewhat with the ALD group, but since 

symptoms vary greatly, it can only be definitively diagnosed through surgery, and it 

affects only women, its epidemiologic attributes are controversial.  

 From November 16th to 21st, 2004, I automatically pulled inlinks to these 

1000 pages. (The Google API limits the number of automatic queries per day, so I 

distributed them over several days.) Due to Google API limitations, I elected to pull 

the URL for only the first 50 pages linking to the given page. The query "link:<URL 

of the page>" provides typical Google search results from which the URLs are 

extracted. In addition, it provides a summary line: 

 Results 1 - 10 of about 41 linking to www.cs.nmsu.edu. (0.13 seconds). 

 This is from the query "link:www.cs.nmsu.edu" on June 8, 2005. 

 

I automatically pulled the estimated number of inlinks, 41 in the example. Based on 

the number of inlinks estimated by Google, only 120 pages out of 1000, or 12%, had 

more than 50 inlinks, so relatively little information was lost by using the Google 

estimate combined with up to 50 URLs of pages linking to the given page. As 

expected, the pages from more common and more controversial queries had more 

pages with over 50 inlinks: 

 

 



 50 

 

Table 3. Inlinks by Query in MMED Corpus. 

Query Pages with over 50 inlinks 

Adrenoleukodystrophy 1 

Alzheimer's 30 

Endometriosis  10 

Fibromyalgia 23 

obesity  23 

pancreatic cancer  8 

colloidal silver 3 

Irritable Bowel Syndrome 11 

late Lyme disease 2 

lower back pain   9 

 

It is worth noting that these numbers are imprecise at best. When one explores the 

Google-produced inlinks to a known domain, such as the one in our example of the 

NMSU Computer Science Department homepage, one can find a number of 

omissions. For example, Dr. Esther Steiner's home page is listed as an inlink, while 

my home page with almost identical text in prominence to the link is not. The page 

titled "sam and lynette's cat pictures" is listed, even though the link on that page is 

less prominently displayed. Nevertheless, based on the distributions in the corpus, it 

appears that the information may still provide an indicator of the positions of pages 

within the Web. 

 Once that data was downloaded, I discovered that 9 documents were in pdf 

format. Of these 7 were converted using Google's "View as HTML" option in the 

search results. One required a search to find an html version on the web and one had 

to be replaced. Ideally, the system would be able to recognize pdf files and 

automatically convert them to html for parsing, but this is beyond the scope of the 

current project. 
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5.3 MMED100 Corpus 

 

 In order to have a manageable subset of the MMED corpus to annotate for 

reliability and type, I created the MMED100 subcorpus. To do this I generated 10 

random numbers, without duplication, between 1 and 100 for each of the 10 query-

based subsets. The resulting 100 documents were annotated (see Annotation section). 

5.4 Semantic Spaces 

 

 In order to create semantic spaces using LSA, the respective corpora were pre-

processed to format them for input into LSA. LSA requires that input be in ascii 

format with two newline characters separating each context (i.e. a blank line). I used 

the "whole" and "paragraph" output of the parser (see Parser section), which are text 

files with the HTML markup removed. There were cases where stray hex characters 

required manual editing and documents, which could not be parsed, were omitted (1 

out of 70 in the IBS corpus and 38 out of 1000 in the MMED corpus). I ran a series of 

python scripts to further clean and format the data and to insert and remove 

identification numbers to create an index for use in checking and debugging. 

 When creating a semantic space using LSA there are two main checks to 

ensure the processes of indexing and singular valued decomposition have been 

completed successfully.  

 The first check is for "one-off" errors, which occur when the index created by 

LSA is misaligned with the document index. The indexes need to be properly aligned 

to make it possible to access specific documents. This can occur when the formatting 

of the input has errors. For example, if there are missing documents or documents that 
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have run together due to missing newline characters or hidden characters, or if there 

are documents which contain no keywords (entire document consists of punctuation 

or symbols). Debugging "one-off" errors involves comparing the indices to zero in on 

the problem document manually. I found a number of these, particularly in cases 

where less-than-ideally formed HTML cased the parser to output a paragraph 

consisting of only punctuation (e.g. ". . .") or where some amount of JavaScript had 

not been completely removed. Editing of the documents was done manually and then 

the automatic indexing process was repeated (put in ids, concatenate, distribute into 

LSA input and index files). These steps were iterated until all "one-off" errors were 

eliminated. As was noted in the Parser section, determining paragraph breaks was a 

less than perfect process. This could certainly be improved, but the costs of doing so 

appear to far outweigh the benefits at the present time. 

 Second, to ensure that the singular value decomposition and dimension 

reduction were performed correctly, we check to make sure that documents in the 

semantic space are highly semantically similar to themselves. This is done by taking 

the text of a document (context) already in the semantic space and creating a new 

vector for it in the given semantic space, then checking the similarity by computing 

the cosine of the angle between the document in the semantic space (accessed through 

its index) and the new vector. In other words, the similarity measure in the space 

should be reflexive: documents should be highly, if not exactly similar, to themselves 

(i.e. the cosine between them should be in the range of 0.9998 to 1). Checks using 
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randomly selected documents were conducted to ensure that this was the case in each 

space. 

 In order to test the hypotheses described above, to create LSA-based features, 

and to create matrices of semantic similarity between documents for clustering and 

data exploration, the following semantic spaces were created: 

• IBSonly 

• IBStasa 

• IBSpara 

• IBSmmed_para 

• IBSmmed_whole 

• MMEDwhole 

• MMEDpara 

 

 All of the spaces were created using the LSA default settings of log-entropy 

term weighting and setting the SVD algorithm to optimize the dimension reduction at 

or near 300 dimensions as shown in Table 4. 

 

Table 4. Semantic Spaces. 

Space Documents Terms Dimensions Weight Folded in 

IBSonly 70 7728 70 Log-

entropy 

none 

IBStasa 44556 100259 282 Log-

entropy 

none 

IBSpara 3439 9680 321 Log-

entropy 

IBS 70 

MMEDpara_ibs 37543 37999 315 Log-

entropy 

IBS 70 

MMEDwhole_ibs 962 27856 311 Log-

entropy 

IBS 70 

MMEDpara 37543 37999 315 Log-

entropy 

MMED 962 

MMEDwhole 962 27856 311 Log-

entropy 

none 
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 The IBSonly space was created from the 70 web pages in the IBS corpus. The 

web pages were striped of html, cleaned and formatted for input into LSA as context. 

This space was created fairly early on in my research, primarily for testing and 

experimentation. Due to its relatively small size and the fact that no dimension 

reduction occurred, it was not expected that classification and clustering would 

perform particularly well. As was discussed in the section on LSA, the ability of LSA 

to exploit term co-occurrence to detect semantic similarity is generally directly 

proportional to the amount of training data. For a corpus this small it would be 

advisable to consider using Ando's Iterative Residual Rescaling (IRR) in place of 

Singular Value Decomposition (SVD) (Ando 2000), because her results indicate that 

her algorithm can work well on small corpora. 

 The IBStasa space was created by concatenating the 70 cleaned web pages 

from the IBS corpus to a subset of the TASA corpus (Touchstone Applied Science 

Associates, Inc.) described in detail at the Latent Semantic Analysis Site at CU 

Boulder (http://lsa.colorado.edu/spaces.html). This corpus is made up of paragraphs 

from textbooks at the high school and college level covering a wide range of 

academic disciplines, including science, social studies and language arts. I chose to 

use the TASA corpus because, having used it in other research, it was readily 

available to me, was already properly formatted for LSA, and would allow me to test 

the hypothesis that, while a larger corpus is generally better to train on, the domain 

the training data comes from makes a difference.  
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 The IBSpara space was created from the 3439 paragraphs output by running 

my parser on the 70 web pages in the IBS corpus. In order to measure the semantic 

similarity between the web pages in the IBS corpus, the documents used to create the 

IBS only corpus were folded in. The process creates vectors for the web pages 

without changing the underlying paragraph semantic space. I created this space to test 

the hypothesis that the best size of context for LSA is generally the paragraph level. 

As noted in the Parser section, the paragraphs here lack the uniformity that one might 

find in more structured data (e.g. the TASA corpus). It is an open question whether or 

not improved parsing of web pages would produce enough improvement in 

performance of a given task to be worth the effort. 

 The IBSmmed_para space was created using the 37543 paragraphs extracted 

by running my parser on the 1000 web pages in the MMED corpus. Again, the 

documents used to create the IBSonly corpus were folded in. The creation of this 

space allows for comparison to the IBSpara to test the hypothesis that a larger corpus 

taken from the same domain will produce more a more useful measure of semantic 

similarity. 

 The IBSmmed_whole space was created using the 962 whole web pages from 

the MMED corpus, striped of html by my parser, and formatted for input into LSA. 

Again, the documents used to create the IBS only corpus were folded in. This space 

allow for comparison with the IBSonly space to see if training on more whole web 

pages creates a better measure. It also allows for comparison with the IBSmmed_para 
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space to determine whether paragraphs or whole documents are better context for 

training. 

 The MMEDwhole space was created using the 962 whole web pages used to 

create the IBSmmed_whole space. This space is analogous to the IBSonly space, but 

significantly larger.  

 The MMEDpara space was created using the 37543 paragraphs by running my 

parser on the 1000 web pages in the MMED corpus. The 962 whole documents used 

to create the MMEDwhole space were folded in. This space allows for comparison 

with the MMEDwhole space to determine whether paragraphs or whole documents 

are better context for training. 
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6 ANNOTATION OF THE CORPORA 

 

I annotated the IBS and MMED100 corpora, based on the definitions of type 

and reliability discussed in the Definition section. This is a less-than-ideal situation 

for two reasons. First, a single annotator introduces bias and subjectivity into the 

annotation process. I expect to remedy this situation soon by conducting an 

annotation study, having at least one other annotator trained on the IBS corpus, then 

tested on the MMED100 corpus (discussed in more detail in the Future Work 

section). 

The second reason is that I annotated the two corpora about one year apart, so 

there may be inconsistencies in the tags between the two corpora, which could 

definitely affect the results obtained from the learning algorithms. 

It is an unfortunate characteristic of supervised learning that the process is 

limited by the amount of data that has been annotated and the quality of the 

annotations. Realizing this limitation, future research includes an intercoder reliability 

study, annotation of more data, and investigation of unsupervised or semi-supervised 

learning algorithms. 
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7 FEATURES 

 

 The key to success in a classification task is to find a good set of features for 

input into the machine learning algorithm or classifier. The goal is to maximize the 

classification accuracy, while minimizing overfitting of the training data. For all of 

the learning algorithms used in this research, the input is a set of feature vectors, one 

vector for each document. There are three main steps in creating a good set of 

features: initial feature selection, feature extraction and selecting a subset of the 

original features. The initial selection of features takes place outside of the system, 

the feature extraction takes place after parsing and running LSA (see system 

diagram), selecting a subset of features takes place after feature extraction and before 

machine learning (see system diagram). We will discuss each of the steps in turn, 

along with issues arising at each step. 

7.1 Initial Selection of Features 

 

 My strategy for the initial phase of feature selection was to identify as many 

potential features as possible. The selection of potenial features was informed by my 

review of the literature, discussed in the Related Work section, on reliability and on 

similar natural language processing tasks, and my intuition from careful review of the 

IBS corpus during the tagging process. I looked for features that would be likely to 

generalize and where the benefits of inclusion would be likely to outweigh the cost of 

extraction. As much as possible, I included features based on the standard critera for 

print media, so that I could empirically test their utility when applied to the Web. 
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My survey of criteria for evaluation on Web sources produced by libraries and 

initial authors on the Web suggests that most criteria fit into seven categories: 

authority, accuracy, currency, scope, purpose, objectivity, and support (although 

terminology may differ slightly between authors). Since scope and coverage are 

synomonous, this list differs from the standard list for print media discussed in the 

section on reliability by including purpose. For print media, at least on a superficial 

level, purpose is relatively transparent (e.g. to report on research, to tell a story). On 

the web, with a broader range of authors, we find a broader range of purposes for 

publishing; hence the purpose bears more scrutiny. My survey results for the seven 

categories are shown in Table 5. 

 I also surveyed the feature sets used by the four studies that looked at 

reliability of information on the web, as discussed in the section on related work 

(Price 1999, Fallis and Frické 2002, Zhu and Gauch 2000, and Amento, Terveen, and 

Hill 2000). A comparison of their features is shown in Table 6, along with a column 

to indicate whether or not I used the same or similar features. I did not include the 

work of Tang et al. (2003), who used similar text-based features to mine, because 

their work was not on the web and because then have not published a comprehensive 

list of their features. 

 During the process of tagging the IBS corpus, I looked for potential features 

and recorded them in XML format to be able to produce a variety of tables and better 

understand possible classification schemes. I looked at which pages had links to each 

other, to explore cliques in the Web sub-graph containing the pages. I looked at word 
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Table 5. Survey of Common Quality Criteria for Web Pages. 

 Detwiler FNO Smith Duke Truman NMSU 

Authority Who yes yes yes yes yes 

Accuracy What yes yes no yes yes 

Currency When yes yes yes yes yes 

Scope no Adequacy yes no Coverage Coverage 

Purpose Why no yes yes no no 

Objectivity Why Fairness no yes yes yes 

Support What no no yes no no 

 

 UNC Johns Hopkins Web Wisdom Harris 

Authority Credibility Authorship yes Credibility 

Accuracy yes Verifiability yes yes 

Currency yes yes yes no 

Scope no no Coverage no 

Purpose no no yes no 

Objectivity bias Bias yes Reasonableness 

Support no yes no yes 

 

 

Virtual 

Chase Cornell UCB VT 

Authority Credentials Author Author yes 

Accuracy Verify no Documentation yes 

Currency no Date Timeliness yes 

Scope no Coverage yes Coverage 

Purpose no no no no 

Objectivity yes yes yes yes 

Support yes yes yes no 
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Table 6. Survey of Features Used in Comparable Studies. 

 Price Fallis Zhu Amento Martin 

Domain Medical Medical Popular Popular Medical 

No. of Features 28 11 6 10 253 

Test Corpus Size 48 pages 100 sites 20 sites N/A 170 pages 

Domain yes yes* no no yes 

Currency yes yes yes* no yes 

HONcode yes yes* no no yes 

Advertizing no yes no no yes 

Authorship yes yes no no yes 

Copyright no yes* no no yes 

Contact Info yes yes no no yes 

Spelling no yes no no no 

Exclamation 

Points yes yes no no yes 

References no yes no no no 

Inlinks no yes yes yes* yes 

Word 

Frequencies no no no no yes 

Broken Links no no yes* no no 

Info to Noise yes no yes* no yes 

YIL Ranking no no yes no no 

Cohesiveness no no yes* no yes 

Outlinks yes no no yes yes 

No. Pages on Site no no no yes* no 

Authority Score no no no yes* no 

PageRank no no no yes* yes 

No. Images no no no yes* no 

No. Audio Files no no no yes no 

Hub Score no no no yes no 

Root Page Size no no no yes no 

Relevance no no no yes no 

Bulletin Board yes no no no yes 

Frameset yes no no no no 

Embedded 

Applic. yes no no no yes 

Applet yes no no no no 

Cookie yes no no no no 

No. red flag 

words yes no no no yes~ 

No. alternative 

words yes no no no yes~ 

No. retail words yes no no no yes~ 

Text-Links ratio yes no no no yes~ 

Fmt-text char 

ratio yes no no no yes~ 
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and punctuation counts, most frequent words (excluding stopwords) to assess their 

utility as features. 

In the end I grouped the potential features into four broad categories: link 

related, properties of the text in general, properties of the html markup, and lists of 

specific words. We will look at each category in turn. 

7.1.1 Features Based on Links 

 

Since we are dealing with the Web, one would like to find a way to exploit the 

topology of the web graph. Numerous studies have shown the value of using links as 

features (for example, see Amento, Terveen, and Hill 2000, Zhu and Gauch 2000, 

Price 1999, Kleinberg 1997). In order to overcome the limitations of using the page, 

rather than the site as the basic unit of analysis (Amento, Terveen, and Hill 2000, 

Kleinberg 1997), I decided to divide both inlinks and outlinks into two categories: 

ones with the same server host name as the page being analyzed and ones with a 

different server host name. This way the link count is broken down into links to or 

from the same site, which presumably should give some information about the 

complexity or sophistication of the site, and links to or from other sites, which should 

provide information about how the page is connected to the rest of the Web. I further 

broke these counts down by domain, because, for example, if a page has the bulk of 

its inlinks coming from ".gov" domains than from ".com" domains, this may tell us 

something about the reputation of the page. I also separated out secure links ("https"), 

because these tend to be indicators of commercial sites or password protected sites. 

Finally, I computed the number of inlinks and outlines that came from distinct server 
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host names to give a measure of the breadth of the page's reputation in the case of 

inlinks, or the balance of the page in the case of outlinks. I also used the grand totals 

of inlinks and outlinks. For inlinks I also included the number of inlinks reported by 

Google. This process produced the 47 features shown in Table 7. 

Table 7. Link Features. 

Inlinks Outlinks 

InOn_au OutOn_au 

InOn_com OutOn_com 

InOn_edu OutOn_edu 

InOn_gov OutOn_gov 

InOn_net OutOn_net 

InOn_org OutOn_org 

InOn_other OutOn_other 

InOn_uk OutOn_uk 

InOn_Secure OutOn_Secure 

InOn_Distinct OutOn_Distinct 

InOn_Total OutOn_Total 

InOff_au OutOff_au 

InOff_com OutOff_com 

InOff_edu OutOff_edu 

InOff_gov OutOff_gov 

InOff_net OutOff_net 

InOff_org OutOff_org 

InOff_other OutOff_other 

InOff_uk OutOff_uk 

InOff_Secure OutOff_Secure 

InOff_Distinct OutOff_Distinct 

InOff_Total OutOff_Total 

In_Total Out_Total 

Google  

 

My naming convention is:  

<In=inlink|Out=outlink><On=onsite|Off=offsite>_<name> 

For domain names, I restricted them to the most common categories and put the rest 

in "other" (this mainly consists of country codes). 

Two additional features in this category are: 
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• PageRank  

• domain  

 

PageRank is the order that the page appeared in the Google search when the 

corpus was pulled. This is not the real PageRank score, but a reasonable 

approximation. Amento et al. (2000) found PageRank to be a useful quality indicator 

in the popular entertainment domain on the web. The domain is the domain of the 

host server name of the current page. It is generally supposed that pages from ".gov" 

or ".org" domains are more likely to be reliable than those from ".com" or ".net" 

domains. This feature has the same weaknesses as the domain features for in and out 

links discussed above. 

7.1.2 Features Based on Properties of the Text 

 

These features are collected from the text, based on the intuition that poorly 

written text is less likely to be reliable and that certain styles of writing will 

correspond to certain types of pages. For example, the personal pronoun "I" is much 

less likely to be used in a medical article than in a testimonial, similarly for 

exclamation marks.  

This set of 42 features falls into three groups: coherence and information 

content measures computed using LSA, overall counts and frequencies of words and 

punctuation, and counts of pronouns and certain adjectives. 

For the overall counts, I used the paragraph files output by my parser to get 

total words and paragraphs. I used the stop word list included with LSA, containing 

439 common words, to count the non-stopwords (presumably the content words). I 
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counted the number of unique words, or words occurring only once in the corpus, 

because I thought a greater number of these words might indicate a more 

sophisticated writing style. I counted words in anchor text, to supplement the counts 

of links. I counted characters and punctuation, but also focused on question and 

exclamation marks, because I suspected that large numbers of question marks might 

indicate FAQs. Large numbers of exclamation marks seemed more likely to appear in 

less reliable commercial or testimonial pages, and less likely to appear in more 

reliable patient leaflets or medical articles. I also used the counts to compute 

frequencies. Given that the pages vary greatly in length, frequencies may give a better 

estimate of the characteristics a given page. On the other hand, including both counts 

and frequencies introduces dependent and possibly redundant features. We will 

explore this issue further when we look at the correlations between the features and 

the classes. 

For the counts of adjectives, I used two sets of adjectives extracted by 

Hatzivassiloglou and Weibe (2000) to study the use of adjectives in detecting 

subjectivity. I used their sets of semantically oriented adjectives. These adjectives, 

either positively or negatively oriented, have the ability to "ascribe in general a 

positive or negative quality to the modified item" (Hatzivassiloglou and Weibe 2000).  

The first set PolPauto contains 344 "polarity plus automatically extracted" positive 

adjectives. The second set PolMauto contains 386 "polarity minus automatically 

extracted" negative adjectives. Hatzivassiloglou and Weibe found that the probability 

of subjective sentiment given an adjective in PolPauto is 0.60 and the probability of 
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subjective sentiment given an adjective in PolPauto is 0.74, compared to the 

probability of subjective sentiment given an adjective is 0.56. Thus we would expect 

the negative adjectives to work better. Rittman et al. (2004) also found that subsets of 

adjectives worked better than all adjectives for detecting subjectivity. It is important 

to note that both of these studies were done in the news domain and Hatzivassiloglou 

and Weibe extracted their adjectives from a Wall Street Journal corpus. My intuition 

for using these sets of adjectives was that pages with greater numbers of semantically 

oriented adjectives are likely to be more subjective and hence less reliable. It is 

possible that this is not the best set of adjectives for this domain or task. Future work 

should included exploring other sets of adjectives and possibly making use of 

Hatzivassiloglou and Weibe's techniques to extract semantically oriented adjectives 

from my MMED corpus or possibly a larger corpus from the medical domain of the 

Web.  

For the features using LSA, I focused on coherence and vector length. Vector 

length gives a measure of the content of the input, in this case paragraphs. The length 

of the vector for each paragraph was computed and then an average for the whole 

page was computed (Avvl). In the semantic space a document vector is the sum of the 

vectors of the entropy-weighted words it contains (with stopwords removed). Since 

this gives an unfair advantage to documents with long paragraphs, I also computed 

the vector length divided by the number of words in the paragraph for each paragraph 

in a page and averaged those to get a normalized value (Avvlw) for each page. 
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Coherence is measured by computing the semantic similarity between 

adjacent paragraphs. The cosine of the angle between the vectors, in the semantic 

space, for paragraph i and for paragraph i+1 is computed. The cosines are then 

averaged by dividing by the number of paragraphs in the page minus one to give the 

average coherence for the page. Basically this measures the uniformity of the overall 

semantic content of the page. Coherence has been a useful measure for topic 

segmentation (Foltz 1996) and team performance (Kiekel et al.2002). Kiekel et al. 

make use of a more sophisticated coherence measure, which computes the lag 

coherence (here we are using lag 1). In other words coherence is computed between 

paragraphs i and i+n, where n varies over a some appropriate range and the results are 

combined to give an overall measure. Future work should include exploring the utility 

of modifying the coherence measure used here. 

Personal pronouns from whole text: 

• I, me, mine, my 

• you, your, yours 

• he, she, her, him, his 

• we, us, our, ours 

• their, theirs, them, they 

 

Other features based on properties of the text: 

• Lines  Number of paragraphs 

• Words  Number of words 

• Avcoh  Average coherence with next line (LSA) 

• Avvl  Average vector length per paragraph (LSA) 

• Avword   average number of words per paragraph (LSA) 

• Avvlw   Average of (paragraph vector length divided by 

the number of words in the paragraph) (LSA) 

• !  Both from whole and anchor text 

• ?  Both from whole and anchor text 
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• TotAllWds Total word in document 

• TotPunct Total number of punctuation characters 

• TotChar Total characters 

• TotNSWds Total non-stop words 

• TotUniqWds Total words only occurring once (stop words included) 

• FreUniqWds (words that only occur once)/total words 

• FreNSWds (non-stop words)/total words 

• FrePunctChar (number of punctuation characters)/characters 

• TotPAdjs Total positive adjectives PolPauto  

• TotMAdjs        Total negative adjectives PolMauto     

• TotAnchWds Total number of anchor words 

• FreAnchWds Total number of anchor words/total words 

 

7.1.3 Features Based on Properties of the HTML Markup 

 

These 17 features include four from the HTML file and 13 from the 

miscellaneous file created by the parser. From the HTML file, I look for copyright 

and trademark symbols. Fallis and Frické (2002) found copyright to be a good 

indicator of quality in medical web pages. In the data exploration phase I found that 

some pages use only the symbol, others only the word, and others use both, so it is 

necessary to extract both the word (see words from whole document) and the symbol 

to ensure that a claim of copyright is detected. Trademark appears infrequently in my 

data, but I expect it to be a good indicator of commercial pages. 

I also extracted author and date information from the HTML metadata and 

server metadata if it was available. Extracting author and date information from the 

text of a page accurately is a difficult task. I investigated tools for doing this (e.g. LT 

TTT developed by Edinburgh Language Technology Group (LTG) 

http://www.ltg.ed.ac.uk/index.html), but elected not to use it for this phase of system 

development. Since Fallis and Frické (2002) found that date was not a good indicator 
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of quality for medical web pages, the cost of implementation seemed to outweigh the 

benefits. This is another area where the feature set might be improved in the future. 

The other features in this set are derived from the html tags by the parser. I 

detected the presence or absence of JavaScript as an indicator of the sophistication of 

the page and possibly of advertising. The other features are counts and frequencies of 

bold, underlined, italicized and header words and font changes and attributes. My 

exploration of the data indicated that medical articles and patient leaflets tended to be 

fairly plain, containing a limited number of these features. In contrast, commercial 

and testimonial pages tended to contain may more of these. The intuition being that 

more reliable pages are less likely to need to make their point with colored fonts and 

underlining (and exclamation marks as discussed above). Two features along these 

lines that might be worth implementing in the futures are number and frequency of 

words in all capital letters. 

• Copyright From HTML symbol 

• Trademark From HTML symbol 

• Author  From HTML metadata 

• Date  From HTML metadata 

• javascript JavaScript present: 0=no, 1=yes 

• boldwn Number of bolded words 

• fontattrub Number of font attributes 

• fontchng Number of font changes 

• headerwn Number of header words 

• italicswn Number of italicized words 

• underlwn Number of underlined words 

• Freboldwn  Number of bolded words/total words 

• Frefontattrub  Number of font attributes/total words 

• Frefontchng   Number of font changes/total words 

• Freheaderwn  Number of header words/total words 

• Freitalicswn  Number of italicized words/total words 

• Freunderlwn  Number of underlined words/total words 
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7.1.4 Features Based on Lists of Specific Words 

 

  I created two lists of words, one to look for in the URLs of outlinks and one to 

look for in the anchor text and the text of the whole document. The words are 

summarized in Table 8 below. There are 78 words in the table, 11 indicated by "(L)" 

are from the URLs of the outlinks and will likely be file names. For example, while 

anchor text may say "About Us" the file it links to may be called "about.html." The 

other 67 words are a single list used to extract features from the parser-created files 

for anchor text and whole text. 

I chose the words based on my exploration of the data and my intuition. I have 

categorized them as criteria, medical, commercial, alternative, and ambiguous words. 

The criteria words are words that correspond to some of the standard quality critera 

for medical web pages. For example, contact information, disclaimers, and privacy 

policies.  

The medical words are typical words that one might find on medical web 

pages. For example, many articles and patient leaflets have sections for symptoms, 

diagnosis and treatment. These could be considered important parts of a balanced 

presentation of a medical condition, so their presence may indicate greater reliability.  

The commercial words were chosen to help identify commercial and possibly 

less reliable pages. The alternative words were also chosen to identify less reliable 

sites, such as support, testimonial and unproven alternative treatments. The three 

words I have classed as ambiguous are “ads,” “effective” and “policy.” Since Fallis 

and Frické (2002) found that advertising on a page is not an indicator of the quality of 
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the information on the page and it does not necessarily indicate that the page is 

commercial, it did not fit into any of my categories. For effective and policy more 

context is needed to properly categorize then. For example, "policy" could refer to a 

privacy policy, a cancellation policy, or a shipping policy, and so on, depending on 

the context. 

Table 8. Feature Words Lists. 

criteria medical commercial alternative ambiguous 

about (L) cause book client ads (L) 

about us causes (L) cart (L) essential effective 

abstract chronic mail orders free policy 

author clinical order (L) herbal  

contact (L) clinical trials order now join  

contact us cure phone order membership  

copyright diagnosed price miracle  

disclaimer diagnosis products natural  

info (L) differentials purchase newsletter  

mailto (L) disease retail organic  

privacy (L) doctor security prevention  

privacy 

statement faq shipping remedies  

search follow-up shopping (L) remedy  

 honcode shopping cart support  

 medication to order testimonial  

 medicine wholesale therapist  

 medline 1shoppingcart (L)   

 patient    

 pharmaceutical    

 prescription    

 pubmed    

 research    

 result    

 symptom    

 syndrome    

 therapy    

 treat    

 treatment    

 workup    
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On a technical note, when looking for these words in the anchor and whole 

text, the program looks for the words with spaces in front of them (e.g. '”cause”). This 

prevents finding the “cause” in because and adding it to the count, but by not leaving 

space at the end of the word allows the program to count plurals. Also, when the 

features vectors are put together, the word counts from the outlinks and the anchor 

text are combined to form one dictionary (hash table) before output, combining the 

counts for the words: author, cure, diagnosis, disclaimer, free, prevention, shipping, 

symptom, testimonial, treatment. Since these words a quite infrequent in the outlink 

URLs, it did not seem worth adding the extra, possibly dependent or redundant 

features.  

The way my code is written, these word lists are easy to modify to test new 

words, so in the future, and I anticipate modifying then as evidence dictates. 

To summarize we have the following features: 

Features Based on Links       49 

Features Based on Properties of the Text     42 

Features Based on Properties of the HTML Markup    17 

Features Based on Lists of Specific Words    145 

Total Features           253  

7.2 Feature Extraction 

 

Feature extraction was done in three steps. First, by running the parser, 

information from the web pages was divided into five files for further processing 

(outlink URLs, anchor text, whole text, text split into paragraphs, and a miscellaneous 

file). In parallel a file with the URLs of the inlinks (up to 50) and Google's estimate 

of the total number of inlinks was created. The original HTML files were also 
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preserved for extracting metadata and specific HTML symbols. This produced a set 

of seven files for each page. 

The next step involved processing each of the seven files to extract the 

features. For the majority, this involved extracting key words (e.g. “miracle”), 

computing counts and frequencies (e.g. total punctuation characters), and analyzing 

link domains. The paragraph and whole text files were used to create the semantic 

spaces using LSA as described in the Data section. LSA was applied to the paragraph 

files to compute the vector length of each paragraph and the average coherence 

between a given paragraph and the immediately succeeding paragraph. The result of 

this step was the creation of seven feature files for each page, one corresponding to 

each of the seven input files. 

The last step extracted the features from each of the seven feature files and 

outputs two files: a file containing the feature vector for input to a machine learning 

algorithm and a human-readable file, listing the feature names and values. In the case 

of tagged data, this script reads a file with the class for each document and appends 

the class as the last component in the feature vector.  

The notation for features in the human-readable files is: 

<file name>_<feature name> 

Here the “file name” refers to the one of the seven files from which the feature was 

extracted. I chose this notation because in some cases there was duplication of feature 

names. For example, I count exclamation points in both the anchor text file and the 
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whole file, so naming features “anch_!” and “whole_!” enables one to distinguish 

between them. 

All of this processing was done at the batch level. In other words, one script 

for each step processed all of the files in the given corpus. 

Once the feature vectors were created and ready for input to a machine 

learning algorithm to build a classifier, some additional preprocessing issues needed 

to be addressed. With the exception of the domain of the given page, which is a 

string, all of the features are numeric. Many are integers, ranging from zero to quite 

large in the case of the total word count. Others, particularly frequencies, are real 

numbers in decimal notation, often between zero and one. Depending on the 

algorithm used, this range of feature values can be problematic and may require 

scaling or normalization. In all cases I used Weka's
2
 "String to Nominal" conversion 

to preprocess the domain feature. 

It is worth noting here why I chose to use a string variable for the domain. 

When parsing the URL, I take the last dot-separated field in the server host name as 

the domain. This works well in general, but will pick up the country code, rather than 

the domain, when a country code is present. In the case where an IP address is present 

instead of a server host name, it will pick up a numeric value. (This is admittedly 

imperfect and should probably be fine-tuned in the future, although the cost-benefit of 

doing so is not immediately clear.) Given a collection of previously unseen web pages 

                                                
2
 Weka is an open-source data mining and machine learning suite of programs written 

in Java and available from the University of Waikato. The algorithms used are 

discussed in the Machine Learning section. 
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there is no way to know beforehand which domains will appear. By making this a 

string variable, all of the domains in a new collection can be included without the 

need to create a list of all possible domains. 

The default for the Support Vector Machine algorithm in Weka automatically 

normalizes the vectors. The default setting uses the L-2 norm, such that the norm after 

normalization is 1.0. I experimented with normalization as a preprocessing step prior 

to running the Decision Tree and Naive Bayes classifiers, but the results in these 

cases were unchanged. 

7.3 Selection of a Good Subset 

 

The extraction process produced 253 features plus the class. Since this is a 

relatively large feature set, it was very likely that there were irrelevant and redundant 

features included in the set. The extent to which this is an issue depends on the 

machine learning algorithm to be used for classification and on the specific 

classification task to be performed. 

Decision Trees are susceptible to irrelevant features, for two reasons. First, the 

amount of data that judgments are based on, is reduced at each step, so an irrelevant 

feature may look good and be chosen to branch on (Witten and Frank 2000). Second, 

because features are chosen in isolation, when there are interactions among the 

features, a relevant feature may not appear to discriminate any better than an 

irrelevant one (Langley and Sage 1994a).  

The Naive Bayes algorithm assumes that all features are independent given 

the class. This assumption works well in the case of irrelevant features, because they 
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are simply ignored. However, the assumption makes the algorithm susceptible to 

redundant attributes, where the independence assumption is clearly violated. (Langley 

and Sage 1994b, Witten and Frank 2000). 

Joachims claims, at least for the text classification task, that Support Vector 

Machines make feature selection unnecessary (Joachims 2002). However, for the 

tasks in this paper, we will see that appropriate reduction of the feature set does 

improve classification performance. 

There are a number of considerations when determining how to reduce the 

features set. One can filter out irrelevant and redundant features or use a 

transformation that reduces the dimension of the set before learning takes place. One 

example of a transformation would be Principal Component Analysis (PCA), which 

transforms the features into a smaller set made up of linear combinations of the 

original features, which explain most of the variance in the set. I decided against 

using PCA, or similar transformation techniques, because I was concerned that the 

ratio of my observations (pages in the corpus) to features was too small to yield a 

reliable analysis. Another reason not to use this methodology is the difficulty of 

interpreting results (i.e. understanding the meaning of 43 linear combinations of 253 

features). 

Another option is to use a "wrapper" method, where the learning algorithm is 

wrapped into the feature selection process (Witten and Frank 2000). For initial ease of 

interpreting results I elected to start with filtering. 
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Having selected filtering as the best option for feature selection, I 

experimented with a number of algorithms. The three main approaches I used were to 

collapse features, to use a classifier to rank the features, and to use statistical tests to 

select features.  

Two issues to note briefly:  

1. Whether to use a forward search of the feature space (i.e. start with no features 

and select them one at a time) or to use backward elimination of features (i.e. 

start with all features and eliminate them one at a time). In general, forward 

search is better to detect redundant features, while backward elimination 

produces better classifier accuracy (Witten and Frank 2000).  

2. Whether to consider individual features or subsets of features for inclusion or 

removal (depending on whether one is searching forward or backward). In 

feature sets like mine, where it is believed that there are features that will 

work better in combination than individually, subset evaluation is probably to 

be preferred.  

In practice, I did extensive experimentation with methods addressing both of these 

issues. 

7.3.1 Collapsing Features 

 

Initially I believed that there would be a real semantic difference, between 

having a given word appear in anchor text, or in the text body of the page. I tested this 

by combining the 67 word features that appear in both anchor and whole text, 

reducing the feature set to 186 features. I tested this for the reliable-other and 
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unreliable-other classification tasks. The results were uniformly worse for the skewed 

unreliable-other classification and worse for the SVM on the reliable-other 

classification, but better for the decision tree and Naive Bayes classifiers. This may 

be due to the SVM handling irrelevant and redundant features better. Overall it 

appears that the naive approach of just combining the lists is not the best way to 

reduce the word features. This appears to confirm my initial intuition that there is a 

semantic difference based on whether the words appear in anchor text or in the whole 

text. 

The next obvious step might be to collapse the word lists based on the five 

categories, although I suspect that this is still too coarse an approach. I considered 

other schemes to combine the word features into, say positive and negative ones, but 

that there was too much ambiguity and subjectivity in the process. I chose instead to 

explore more principled ways to eliminate features using classifiers and statistical 

correlations. 

7.3.2 Classifiers 

 

Weka (Witten and Frank 2000) has a number of built-in feature (attribute) 

selection algorithms. After some experimentation with the algorithms on the features 

from the IBS corpus, I settled on two algorithms to use for comparison with other 

feature sets: Information Gain using Ranker search (which is the required search 

method in their implementation and ranks features by their individual evaluations) 

and Classifier Subset Evaluation to incorporate consideration of subsets, not just 

single features in the selection process.  
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Information Gain (IG) "evaluates the worth of an attribute by measuring the 

information gain with respect to the class" (Weka online documentation). So this 

algorithm considers each feature individually and may miss combinations of features 

that work well together. 

To remedy this, Classifier Subset Evaluation "evaluates attribute subsets on 

training data" using a classifier to evaluate the accuracy of the subsets. For the 

classifier I used Naive Bayes, which I found to be relatively fast on this fairly 

complex task given my large number of features. I varied the search methods, 

deciding that Best First Search (BFS) was the most suitable. I was concerned that 

BFS might favor features that were first on the list, so I rearranged the list order. This 

produced only minor differences in the output, so I elected to use the feature list in 

the original order. (In all runs with the Naïve Bayes subset evaluation I used 10-fold 

cross-validation on the training data.) 

An important distinction to make here is that these feature selection methods 

select the features with respect to a given class, so the features selected for reliable-

other (R-O), 35 features, differ from those selected for unreliable-other (U-O), 23 

features. In contrast, the first method, collapsing the feature set is done without regard 

to class, so the same 186 features are used for both cases. 

Use of these two feature selection methods resulted in substantially smaller 

feature sets and showed some interesting interactions between the learning 

algorithms. Naive Bayes worked best on both sets with the feature set produced by 

Information Gain. The decision tree algorithm, which uses information gain to select 
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features to branch on, does best with the features selected by the Naive Bayes 

classifier for the R-O classification, but has mediocre results for U-O classification. 

This seems to indicate that a combination of Naive Bayes and Information Gain 

works well for these classification tasks. 

7.3.3 Statistical Methods 

 

I also made use of three standard statistical analyses using the SPSS statistical 

software: correlation, regression and discriminant analysis. One of the big advantages 

to using correlations is that they provide information about features that are positively 

and negatively correlated to the given class. I ran these statistics for R-O and U-O. I 

created three feature sets:  

• R: features that were significantly correlated with R-O  

• U: features that were significantly correlated with U-O  

• RU: the union of the R and U feature sets 

 

The RU set seemed to work best overall and since it is a slightly large set; there may 

be less risk of overfitting the training data. 

 For classification by type, I ran correlations for the C-O (commercial-other), 

L-O (links-other) and P-O (patient leaflets-other) categories and created one features 

set using the features that were correlated significantly with at least one class. 

• CLP: features that were significantly correlated with at least one of C-O, L-O, 

or P-O. 
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7.3.4 Combination 

 

Two other strategies were used for removing features. First, removing words 

that did not appear in any of the various features sets, leaving me with a set of 204 

features. Second removing features that didn't appear in the IBS and MMED RU sets 

or in the IBS and MMED Naive Bayes sets, or in the MMED Information Gain set. 

Since neither method improved the results they are not reported them here. 

7.4 Conclusion 

 

We now summarize the feature selection results for both reliability and type of 

page. We begin by looking at which features were chosen for each task and then look 

at how the feature sets performed for classification. 

7.4.1 Reliability Features Selected 

 

We look at the four feature categories: features based on links (Links), 

features based on properties of the text (Text), features based on properties of the 

HTML markup (Html), and features based on lists of specific words (Words). We 

would like to see if some of these categories work better than others on specific 

classification tasks. We further consider the five types of words from the word lists: 

alternative, ambiguous, commercial, criteria and medical. Again we would like to 

determine what role these categories play in the various classification tasks.   

The distribution of features for the reliable-other task is shown in Figure 1. 

Here we consider three feature sets: Information Gain (IG), Naïve Bayes (NB) and 

the features significantly correlated with either the reliable or unreliable classes (RU) 
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for both the IBS and MMED100 corpora. The distribution for the unreliable-other 

task is shown in Figure 2. 

Figure 1. Feature Distribution for Reliable-Other. 

 

Figure 2. Feature Distribution for Unreliable-Other. 
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With the exception of the information gain feature set on the MMED100 corpus and 

the unreliable-other task, features from all four categories play a role in the 

classification. Much more information is provided by looking at the distribution of 

the word features for these two tasks as shown in Figure 3 and Figure 4. Here we can 

see that the medical words play a much greater role in determining reliability, while 

the commercial works play a much greater role in determining unreliable pages. 

 

Figure 3. Word Feature Distribution for Reliable-Other. 

 

7.4.2 Reliability Features for Classification 

 

The feature sets for Information Gain (IG), Subset Classification with Naive 

Bayes (NB) and correlations are shown in Table 9 for the reliable-other (R-O) 

classification task and in Table 10 for the unreliable-other (U-O) classification task, 

both for the IBS corpus. Similarly, Tables 11 and 12 show the results for the 
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MMED100 corpus. All table entries are Cohen’s Kappa (discussed in the section on 

Machine Learning). 

 

Figure 4. Word Feature Distribution for Unreliable-Other. 

 

 

In the cases of Information Gain and Naïve Bayes, the features used are those 

selected for the specific classification task (reliable-other or unreliable-other). For the 

correlations RU indicates that all features with significant correlations to either class 

(reliable or unreliable) were used, while R indicates only those features which 

significantly correlated with reliability were used and U indicates only those features 

which significantly correlated with unreliable pages were used. The “collapsed 

words” feature set was created by combining the counts for words that were in both 

the whole document and in the anchor text into a single feature for the given word. 

For example, if “diagnosis” appeared once in the anchor text and four times in the 
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whole text, the single feature “diagnosis” would have a value of five. The results are 

based on the three learning algorithms applied to each feature set.  

The best performance overall for the Decision Tree algorithm seems to be on 

the Subset Classification with Naive Bayes feature set. The best performance overall 

for the Naive Bayes algorithm seems to be in the Information Gain feature set. For the 

Support Vector Machine the best performance seems to be on the RU set. None of 

these results are definitive and it seems clear that explaining the base feature set and 

using a larger corpus for features selection would be helpful.  

Table 9. Feature Comparison for Reliable-Other Classification on IBS Corpus. 

IBS All 

Features 

NB IG CorrRU CorrR Words 

Collapsed 

R-O 253 34 36 92 38 185 

DT 0.1458 0.4173 0.3482 0.1116 0.362 0.2432  

NB 0.3484 0.4292 0.6381 0.5806 0.5449 0.436 

SMO 0.5722 0.5251 0.623 0.623 0.6849 0.4516 

 

 

Table 10. Feature Comparison for Unreliable-Other Classification on IBS 

Corpus. 

IBS All 

Features 

NB IG CorrRU CorrU Words 

Collapsed 

U-O 253 22 25 92 55 185 

DT 0.2441 0.303 0.336 0.4263 0.336 0.1869 

NB 0.3374 0.6582 0.7202 0.5306 0.5965 0.1481 

SMO 0.5681 0.4973 0.2792 0.5774 0.2118 0.4263 

  

 

Table 11. Feature Comparison for R-O on MMED100 Corpus. 

MMED100 All 

Features 

NB IG CorrRU CorrR IBScorrRU 

R-O 254 45 43 88 58 93 

DT 0.3027 0.3851 0.374 0.284 0.3178 0.3708 

NB 0.2851 0.5141 0.4211 0.4762 0.4086 0.3889 

SMO 0.3274 0.4826 0.4568 0.443 0.5096 0.211 
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Table 12. Feature Comparison for U-O on MMED100 Corpus. 

MMED100 All 

Features 

NB IG CorrRU CorrU IBScorrRU 

U-O 254 47 10 88 34 93 

DT 0.0924 0.1418 0.0484 -0.0277 0.0149 0.16 

NB 0.1025 0.3613 0.5052 0.1178 0.3304 -0.0032 

SMO 0.3889 0.175 0.2212 0.3937 0.3433 0.2205 

 

7.4.3 Type Features Selected 

 

As above for the reliable-other and unreliable-other classification tasks, we 

now look at the distributions of features selected for the three “type” classification 

tasks: Commercial-Other (C-O), Link-Other (L-O), and Patient Leaflet-Other (P-O). 

The distributions on the four categories are shown in Figures 5, 6, and 7, respectively. 

 

Figure 5. Feature Distribution for C-O. 
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Figure 6. Feature Distribution for L-O. 

 

Figure 7. Feature Distribution for P-O. 
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 In the three figures above we can see that link features play a major role in 

determining Links pages, while almost no role in determining Commercial pages. 

Overall, word features play a proportionately larger role in classifying the 

Commercial pages than do the other feature sets.  Now we turn to the distribution of 

the word features for the three page types. Figure 8 shows the word distribution for C-

O, Figure 8 for L-O and Figure 10 for P-O. 

Figure 8. Word Feature Distribution for C-O. 

 

Here we see that medical words play a large role in determining Patient Leaflet and 

Links pages, but very little role in determining Commercial pages. For Commercial 

pages the commercial words play a much greater role than for the other two page 

types. While different categories of words play different roles depending on the type 

of page being classified, it does not appear that any category of words can be left out 

of the feature set. 
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Figure 9. Word Feature Distribution for L-O. 

 

 

Figure 10. Word Feature Distribution for P-O. 
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7.4.4 Type Features for Classification 

 

The feature sets for Information Gain (IG), Subset Classification with Naive 

Bayes (NB) and correlations are shown in Table 13 and Table 14 for the C-O task on 

the IBS and MMED100 corpora, respectively. Similarly, Tables 15 and 16 show 

results for the L-O talks and Tables 17 and 18 for the P-O task. For the type 

classification task the combined correlations did not works as well as they did for 

reliability classification. The best feature sets were generated by either Information 

Gain or Subset Classification with Naive Bayes, with Information Gain performing 

best overall. (All table entries are Cohen’s Kappa.) 

Table 13. Feature Comparison for C-O on IBS Corpus. 

 

 

 

 

 

Table 14. Feature Comparison for C-O on MMED100 Corpus. 

 

 

 

 

 

 

Corpus IBS IBS IBS IBS 

Class C-O C-O C-O C-O 

Percent 31-69 31-69 31-69 31-69 

Features 253 IG 35 NB 29 CORR 87 

DT 0.4214 0.5076 0.5364 0.4937 

NB 0.4258 0.7023 0.5660 0.6384 

SMO 0.3670 0.7432 0.6184 0.6184 

Corpus MMED100 MMED100 MMED100 MMED100 

Class C-O C-O C-O C-O 

Percent 6-94 6-94 6-94 6-94 

Features 253 IG 17 NB 7 CORR 70 

DT 0.5787 0.5787 0.4183 0.5787 

NB -0.0804 0.3681 0.3681 0.0978 

SMO 0.4183 0.7402 0.7402 0.5587 
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Table 15. Feature Comparison for L-O in IBS Corpus. 

 

 

 

 

 

 

 

 

 

Table 16. Feature Comparison for L-O on MMED100 Corpus. 

 

 

 

 

 

 

 

 

 

Table 17. Feature Comparison for P-O on IBS Corpus. 

 

 

 

 

 

 

 

 

 

Table 18. Feature Comparison for P-O on MMED100 Corpus. 

 

 

 

 

 

Corpus IBS IBS IBS IBS 

Class L-O L-O L-O L-O 

Percent 20-80 20-80 20-80 20-80 

Features 253 IG 25 NB 32 CORR 87 

DT 0.1470 0.0522 0.1942 0.2175 

NB 0.1953 0.5605 0.7698 0.5857 

SMO 0.4626 0.4964 0.7400 0.4964 

Corpus MMED100 MMED100 MMED100 MMED100 

Class L-O L-O L-O L-O 

Percent 19-90 19-90 19-90 19-90 

Features 253 IG 10 NB 25 CORR 70 

DT 0.1444 0.0000 -0.0342 0.0222 

NB 0.1720 0.2667 0.1852 0.1852 

SMO 0.2092 0.1852 0.1538 0.1270 

Corpus IBS IBS IBS IBS 

Class P-O P-O P-O P-O 

Percent 28-72 28-72 28-72 28-72 

Features 253 IG 47 NB 11 CORR 87 

DT 0.0990 0.3925 0.2764 0.1284 

NB 0.2737 0.5382 0.2084 0.4617 

SMO 0.3670 0.1390 0.2764 0.3724 

Corpus MMED100 MMED100 MMED100 MMED100 

Class P-O P-O P-O P-O 

Percent 35-65 35-65 35-65 35-65 

Features 253 IG 26 NB 47 CORR 70 

DT 0.2276 0.2985 0.2589 0.2962 

NB 0.2750 0.4582 0.3718 0.4624 

SMO 0.5328 0.5729 0.5195 0.5664 
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7.4.5 Summary 

 

We have seen that the different types of features play greater or lesser roles in 

the various classification tasks. No one group of features can be eliminated from 

consideration. The feature distribution data suggests that designing word features 

tailored to the type of page one wishes to classify may be helpful. For example, it 

confirms our hypotheses that commercial words are useful to find commercial pages 

and medical words are useful for identifying pages with medical information. The 

features sets also vary in their utility depending on the classification task and the 

corpus on which they are tested. Probably the best overall method to select the 

features is Information Gain.  
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8 DATA EXPLORATION 

 
This section describes my exploration of the data using hierarchical clustering 

with the R Statistical Package. I experimented with clustering by page reliability and 

type, using both the page vectors from various LSA semantic spaces and the feature 

vectors. I experimented with a variety of distance metrics and agglomeration 

methods. In the case of the feature vectors I experimented with both normalized and 

raw vectors. 

This exploration provided focus for failure analysis, by pointing to pages of 

different reliability levels and types, which clustered together. It also showed: 

1. That clustering alone with the current feature vectors is insufficient for 

these classification tasks. 

2. That the classification tasks have some hope of succeeding. 

3. The classification of links pages is likely to be more difficult than 

commercial and patient leaflet pages. 

8.1 The R Statistical Language 

 

 To perform the clustering I used the R statistical language, described by the R 

Project web site as follows: 

R is a language and environment for statistical computing and graphics. It is a 

GNU project which is similar to the S language and environment which was 

developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) 

by John Chambers and colleagues. R can be considered as a different 

implementation of S. (http://www.r-project.org/) 

  

I made use of R’s hierarchical clustering, distance metrics and graphics functionality. 
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8.2 Hierarchical Clustering 

 

 A set of documents can be clustered hierarchically given a distance metric and 

a specified agglomeration method. My goal was to use an unsupervised method to see 

if there were detectable patterns in my data. In particular, I wanted to compare LSA 

semantic spaces, to test the hypothesis that pages of the same reliability level or page 

type are semantically similar. In addition, I believed that clustering could be useful in 

failure analysis of my other classifiers. 

 I experimented with several agglomeration methods and found the “complete 

linkage” method best suited my data. The input to the algorithm is a dissimilarity 

matrix, whose (i,j)th entry is the dissimilarity of document i to document j 

(dissimilarity is 1-similarity). The iterative algorithm starts by assigning each object 

to its own cluster and at each stage joins the two most similar clusters, until there is a 

single cluster. In complete linkage, the distance between two clusters is defined as the 

distance between the most distant pairs of objects in them: 

 

d(P,Q) = Max{d(i,j): i is in P and j is in Q} 

 

 I also experimented with distance metrics. The cosine metric is built in to 

LSA, but vectors can be extracted from the semantic space and other metrics can be 

used. I generally used the Euclidean metric, the Maximum metric (uses the maximum 

distance between two components), the Manhattan metric (sum of the absolute value 

of the distances between components, also know as the Taxi-cab metric) and the 

Canberra metric (takes into account distance between two points and also their 

relation to the origin: sum(|x_i – y_i|/(x_i + y_i)).  
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8.3 Summary 

 

 No definitive conclusions have come out of this work and its primary values 

has been to provide me with a better understanding of the data and to provide 

direction for failure analysis. It has provided equivocal confirmation of the semantic 

similarity between types of pages and to a lesser extent reliability levels of pages, 

while showing that semantic similarity as computed by in the LSA semantic space is 

insufficient as the only classification method. 

 Below, in Figure 11, is an example of the clustering output, using complete 

linkage agglomeration and the cosine metric computed in the IBSpara semantic space 

on the documents from the IBS corpus. 
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Figure 11.  Dendrogram of IBS Corpus Clusters. 
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9 OVERVIEW OF THE SYSTEM 

 

We now turn to an examination of the system. The data flow diagram, Figure 

12, at the end of this section, describes the system modules and the flow of the data 

through them. Here we will briefly describe each module and point where they are 

discussed in more detail. All programs for the system were written in Python. 

9.1 Google Pull: Pages and Inlinks 

 

These two modules download the web pages associated with the first n hits for 

a query to the Google search engine and the top (up to 50) URLs associated with the 

inlinks to a URL read from a file list through the Google API, respectively. In 

addition to the page itself, the page extractor also downloads metadata from the server 

and Google (e.g. last modified date and Google snippet). The inlink extractor also 

pulls the number of inlinks Google reports for the given URL. (This is discussed in 

more detail in the Feature section.) 

Table 19. Google Pull Module. 

Module Input Output 

Google Pull Query Set of HTML files, one for 

each search results, with 

page, and server and 

Google metadata 

Google Pull Inlinks File with list of URLs Set of files, one for each 

URL, containing list of 

URL of pages that link to 

the given URL 
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9.2 Preprocessing 

 

This currently involves semi-automatic processing, primarily in conversion of 

any “.pdf” files to HTML. There is some manual checking of the data and the 

creation of indexes for later debugging. In the case of the MMED corpus, one of my 

queries was “Alzheimer’s.” I ran a script to change the file names to “Alzheimer_s” 

for simplified processing later. My indexing system for the MMED corpus renamed 

files to: 

<query number>.<order it appeared in search results> 

This module is also discussed in the Data section.  

Table 20. Preprocessing Module. 

Module Input Output 

Preprocessing HTML files from Google 

Pull Module 

HTML files ready for 

Parser, and Indexes 

 

9.3 Parser 

 

 The parser is an object oriented python program that uses the HTML mark-up 

to create lists and counts of items on the page that I wanted to extract. For more 

details about the final output, see the Features section. It processes the following 

HTML starting and ending tags: a, script, p, dd, td, h1, h2, h3, font, I, b, u, 

blockquote, title, and meta. In the cases of tags a, script, font and meta, it collects 

attribute information. So for example, in the case of the a tag with attribute href, we 

collect the URL in addition to the anchor text. One of the more complicated parts of 

the parser is extracting paragraphs. Here in addition to the p tag, we look for block, li, 

td, dd, and th tags that delimit text segments.  The extent to which the downloaded 
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HTML files are well formed varies greatly, as does the writing style of the author, so 

even with several cleaning steps the paragraphs can range from a single word to a 

whole page. I considered doing more clean-up in the preprocessing module, but 

decided that overall the parser worked well enough, so the additional processing costs 

might not be worth possible gains. The parser output is six files shown below. The 

debugging file was used to check and debug the parser during development and is not 

used to collect features; the other five files are input for feature extraction. 

Table 21. Parser Module. 

Module Input Output 

Parser HTML files from 

preprocessing module  

Six set of files into five 

directories, one file for 

each page and each feature 

type: 

Outlinks 

Anchor Text 

Misc. Features 

Paragraph Text 

Whole Text 

Debugging File 

 

9.4 Latent Semantic Analysis 

 

 This module takes the paragraph text output from the parser and uses it to 

create a semantic space using LSA. The whole-text documents output by the parser 

are then folded in to the semantic space so they are available for comparison. How 

LSA does this is discussed in more detail in the LSA section. The process of creating 

the semantic spaces is discussed in the Data section. 
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Table 22. LSA Module. 

Module Input Output 

LSA Paragraph text files from 

Parser 

Whole text files from 

Parser 

Semantic Space  

 

9.5 Feature Extraction 

 

This module consists of a set of scripts, one for each type of file output 

produced by the Parser, which extracts the features and puts them in new files. For 

example, each file in the “outlinks” directory is read, the features are extracted and 

they are put in a new file in the same directory. The files of each type are batch 

processed in the directory where they reside. The script that runs in the paragraph 

directory, in addition to extracting features directly from the files, calls LSA to 

extract additional coherence and vector length features. A script is also run on the 

HTML files in the main directory to extract metadata and a few HTML symbols. 

Once the scripts are run in each directory, a final script reads the output files in all of 

the directories and combines the features for each page into a feature vector. It also 

incorporates classification lists created from the corpus annotations. The feature 

vector is output to two files, one formatted for input into a classifier and one in 

human readable format for checking and debugging. The module was constructed this 

way to enable checking and debugging at each step, but could easily be wrapped into 

one automatic process. This module is also discussed in the Feature section. 
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Table 23. Feature Extraction Module. 

Submodule Input Output 

Extract Features 

One program for each file 

type output by parser 

Files output by Parser, 

original HTML files 

Files with extracted 

features 

Create Vectors All files output by Extract 

Features and Class List 

from Annotations 

Files, two for each page, 

one containing feature 

vector and one human 

readable 

 

9.6 Feature Selection 

 

 The feature selection module concatenates the vector files output by the 

Feature Extraction module and the header formatted for input to Weka. Once the file 

is ready for input to Weka, the desired attribute selection algorithm, if any, is selected 

and run to give a smaller set of features. An alternative is to concatenate the vectors 

with a header appropriate for input into SPSS and run correlations. 

Table 24. Feature Selection Module. 

Module Input Output 

Feature Selection Vector files output by 

Feature Extraction, header 

for either Weka or SPSS 

Reduced set of features 

 

9.7 Clustering with the R Statistical Language 

 

 This module is currently a stand-alone module used in data exploration and is 

discussed in more detail in the Data Exploration section. It takes as input the feature 

vectors from either the Feature Extraction module, or a document vector from a 

semantic space, or a matrix of the cosine similarity of the document vectors in the 

LSA semantics space. In the case of raw vectors a distance metric is also given as 
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input. An agglomeration method is also input. The output is a hierarchal clustering 

diagram. 

9.8 Machine Learning: N-Closest 

 

This is currently a stand-alone module, because it was designed for data 

exploration and to test the semantic spaces. In the future it should be more directly 

incorporated into the classification process, because the results on R-O (Reliable-

Other binary classification) and U-O (Unreliable-Other binary classification) are 

competitive with the other classifiers used in learning (see discussion in Results 

section). It takes as input the index numbers of the documents one wishes to classify 

in the semantic space being used, the number n (radius) of closest documents to use 

for comparison, and a classification list from the corpus annotations. It calls LSA, 

using the syn command, which calculates the cosines of the angles between each of 

the documents whose index numbers are input. It outputs a file with the n nearest 

documents in the semantic space and their class, and overall statistics for the run. The 

N-closest algorithm is discussed in the Machine Learning and Data sections. 

Table 25. N-Closest Module. 

Module Input Output 

N-closest Classification list from 

annotation of the corpus, 

radius n, and range of 

document numbers in the 

semantic space to compare 

File with classification 

information for each 

instance and statistical 

summary  
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9.9 Machine Learning: Weka 

 

 This module uses the algorithms available in the Weka open-source data 

mining and machine learning suite of programs written in Java. The input format is a 

“.arff” file which contains a header detailing the relation and features, followed by the 

feature vectors. The output is a file with statistics on the classification results. The 

Weka algorithms are discussed in the Machine Learning section. 

Table 26. Weka Module. 

Module Input Output 

Learning with Weka .arff file with feature 

vectors  

Classification Results 

 

 

9.10 Data Flow Diagram 

 

 A diagram of the data flow through the system, as described above, is shown 

below in Figure 12. 
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Figure 12. Data Flow Through System Modules 
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10 MACHINE LEARNING 

 

In the work presented in this thesis we will make use of machine learning 

algorithms to learn classifiers for reliability and types of web pages in the medical 

domain. All of our learning will be supervised, in that we will be training our 

classifiers on data whose classifications are known in advance. The exception to this 

is the hierarchal clustering discussed in the data exploration section.  

The basic idea of learning a classifier is to infer or estimate a classification 

function from a labeled sample of data, called training data, which will classify new 

data instances accurately (Joachims 2002, Mitchell 1997).   For a more formal 

description, we start with a training sample T of n labeled instances of the form (x_i, 

y_i). Each x is a feature vector that represents a document and each y is the class label 

associated with the document. Ideally the sample is drawn from an unknown, but 

fixed, probability distribution that specifies the learning task, in an independent and 

identically distributed manner, although this is not essential for the learning 

algorithms we will use (Joachims 2002). The training sample T is then input to a 

learning (classifier building) algorithm that learns a function (rule, classifier) f. The 

function, f, can then be applied to new data instances, whose feature vector 

representation is the same as for the training instances and the output will be the 

predicted class label for the new instances. 

One issue that arises in supervised learning is the possibility that the classifier 

will “overfit” the training data and not generalize well to new instances (test data). 



 106 

For example, in the case where some of the features in the document representation 

are sparse, they could occur disproportionately in the training instances leading the 

classifier to weight them more heavily than is appropriate given the true distribution. 

Similarly, if the features do not occur in the training instances, they may be 

discounted inappropriately. An example of how this can be dealt with is pruning 

decision trees, as discussed below. Overfitting can also be lessened by using n-fold 

cross validation on the training set. Here the training set is randomly divided into n 

subsets and for each one the classifier is trained on the other n-1 subsets and tested on 

the one held out, the results of all n runs are then averaged to create the classifier. 

In this section we discuss two measures from Information Theory: entropy 

and information gain, which are necessary to understanding aspects of the feature 

selection process and the decision tree classifier. We then survey the classification 

algorithms from machine learning used this work. We end with a discussion of the 

evaluation measures used to interpret the results here and in the comparable related 

work. 

10.1 Information Theory 

 

 In both the feature selection process and the decision tree classifier we will 

make use of two information theoretic measures: entropy and information gain. Since 

information gain is computed using entropy we will start by discussing entropy. 

 Entropy measures the impurity of an arbitrary collection of samples (Mitchell 

1997). For the binary case, if we have a collection of examples of two classes, R and 



 107 

O, each having a probability distribution p(R) and P(O) (here it is their proportion in 

the collection), the entropy of the collection is defined as: 

 

Entropy(collection) = -p(R)log p(R) + -p(O)log p(O) 

 

Where the logs are base 2 and 0log0 is defined to be 0. When all the instances in the 

collection are in one class, the entropy of the collection will be 0 and when the 

distribution of the classes is evenly divided the entropy of the collection will be 1.  

 Entropy can be generalized to an arbitrary number of classes, but we will not 

need it here.  

 Information Gain is used to determine the effectiveness of partitioning a 

collection based on a given attribute or feature by measuring the reduction in entropy 

after the partition (Mitchell 1997). So Gain(U, A), where U is the collection and A is 

the attribute, is the entropy of U minus the expected value of the entropy of U after 

the partition.  

10.2 Learning Algorithms 

  
 In the case of the three algorithms we will discuss first, Decision Trees, Naïve 

Bayes, and Support Vector Machines, I use the implementations available in Weka. 

Below I will briefly describe them and discuss some issues involved in choosing and 

using them. 

10.2.1 Decision Trees 

 

 This algorithm creates a tree, where the nodes are features, by choosing at 

each step the feature that maximizes Information Gain (discussed above). The leaves 
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are labeled with the classes. At each internal node branching is based on the values of 

the feature. For example, the feature label for a node is ‘miracle’, the left branch 

might be for instances having greater than or equal to five occurrences of ‘miracle’ 

and the right branch for those with less than five. At each step the remaining features 

are examined individually and the one maximizing information gain is chosen. 

 

 The Decision Tree algorithm I used in Weka, J48, is an implementation of 

Quillen’s C4.5 algorithm (Quillen 1986). The algorithm is top-down and greedy, with 

no back tracking. I used the default setting for a pruned tree in Weka. 

 The goal is to minimize the depth of the tree, with high information gain 

features nearer to the root. Trees may be pruned to avoid overfitting the data. One 

pruning method takes each node, removes its subtree and assigns the most frequent 

class from the leaves of the subtree to the node. If the pruned tree performs no worse 

than the original, the new tree is used (Mitchell 1997). 

 Decision Trees can be useful in the feature selection process and to convert 

continuous variables into discrete ones. They are also useful for data exploration 

because of the ease of interpreting their results by viewing the actual tree. For 

discussion of how redundant and irrelevant features affect Decision Tree 

performance, see the Features section. 

10.2.2 Naive Bayes 

 

 Naïve Bayes classifiers are probabilistic classifiers that have been commonly 

used for text classification tasks (Mitchell 1997, Joachims 2002, Yang 1999, 
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Alpayadin 2004) including spam detection (Pantel and Lin 1998) and review mining 

(Pang, Lee, and Vaithyanathan 2002). The basic idea is that we would like to 

calculate the conditional probability of a class, given a set of features. i.e. P(C|x), 

where C is the class and f is a set of features. Using Bayes Rule we can rewrite this as 

follows: 

 

P(C|x) = (P(C)p(x|C))/p(x) 

 

Where P(C) is the prior probability of the class that can be computed from the class 

frequencies in the training data. And p(x) is the evidence or the marginal probability 

that x is observed, regardless of class, which can also be computed directly from the 

training data. So we are only missing p(x|C), the class likelihood that an event in C 

has observables x (i.e. the probability that if an instance has class R, it has features x).  

The class likelihood can be made computationally tractable by assuming that the 

features are independent of each other given the class. Then the class likelihood is the 

product of the probabilities of the individual features x_i in x, given the class: 

 

p(x|C) = product(p(x_i|C)) 

  

Each p(x_i|C) can be estimated by dividing the number of times x_i occurs with C by 

the number of occurrences of C (often one is added to the denominator to ensure it is 

never zero). 

 

p(x_i|C) = N(x_i, C)/N(C) +1 

 

Note that in the case of sparse features, if the probability of one of the features 

is zero, then the whole product is zero, which is undesirable. This can be avoided by 
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smoothing (adding a very small number to the numerator to ensure it is non-zero), or 

by converting to logarithms to work with sums rather than products. 

The assumption that features are independent of each other given the class is 

often not true for text data or features sets such as mine. However, in practice, even 

when the assumption is violated, Naïve Bayes often works surprisingly well and is 

competitive with more sophisticated classifiers. For additional discussion of the effect 

of irrelevant or redundant features on Naïve Bayes, see the Features section. 

 

10.2.3 Support Vector Machines 

 

 Support Vector Machines (SVM) are a relatively new learning method 

introduced by Cortes and Vapnik (1995) based on Vapnik’s (1995) work in statistical 

learning theory. Since then they have been used successfully for a variety of 

classification tasks including face recognition (Osuna, Freund, and Girosi 1997) and 

text classification (Joachims 2002).  

 SVMs are based on the idea of minimizing structural risk from Statistical 

Learning Theory (Vapnik 1995). The risk function R(f) measures how well the 

classification function f performs and is based on a loss function L(f(x), C) which 

measures how far off the predicted classification is from the observed classification 

for a feature vector x. In the binary case it is common to use a 0/1 loss function, 

which returns 0 if the classifications agree and 1 otherwise (Joachims 2002). The risk 

function in this case is the error rate E(f), or the probability that a false prediction will 

be made on a randomly drawn instance according to the underlying probability 
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distribution. It may be the case that all errors should not be treated equally, but 

modifying the loss function to include costs can alleviate this problem. SVMs are 

designed to find the right complexity of the classification function f, while 

minimizing the error rate E(f). 

 The linear SVM that we are using is a form of linear discriminant learning that 

finds the optimal hyperplane that separates the training data into the two, labeled 

classes. Here the optimal separating hyperplane maximizes the margin between the 

hyperplane and each of the classes. (The margin is the distance between the 

hyperplane and the closest instance in each class.) Maximizing the margin provides 

the best generalization to new data and gives the optimal separation between classes. 

 Although not used in this work, one of the advantages to using SVMs is that 

they are kernel-based classifiers and can handle classification tasks where the optimal 

discriminant is nonlinear. This is accomplished by mapping the classification problem 

to a new space where a linear model can be used. The mapping is a suitable nonlinear 

transformation between the basis vectors of inner product spaces. The two most 

common transformation are polynomials and spherical (radial basis function). In my 

experiments neither of these transformations improved the results, except in very 

specific cases. 

 Weka implements Platt’s (1998) sequential minimal optimization (SMO) 

algorithm for training a support vector classifier. Although I experimented with a 

variety of parameters, all of the results reported here are using the default setting for 

the linear SVM. 
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10.3 Latent Semantic Analysis (LSA) 

 

10.3.1 Background 

 

LSA is a fully automatic corpus-based statistical method for extracting and 

inferring relations of expected contextual usage of words in discourse (Landauer, 

Foltz and Latham 1998). In LSA the text is represented as a matrix, where there is a 

row for each unique word in the text and the columns represent a text passage or other 

context. The entries in this matrix are the frequency of the word in the context. There 

is a preliminary information-theoretic weighting of the entries, followed by singular 

value decomposition (SVD) of the matrix. The result is a much lower dimensional 

"semantic space," where the original words and passages are represented as vectors. 

The meaning of a passage is the average of the vector of the words in the passage 

(Landauer, Latham, Rehder, and Schreiner 1997). 

For a more detailed view, once the word-by-context matrix is constructed, the 

word frequency in each cell is converted to its log and divided by the entropy of its 

row (-sum (p log p)). The effect of this is to "weight each word-type occurrence 

directly by an estimate of its importance in the passage and inversely by the degree to 

which knowing that a word occurs provides information about which passage it 

appeared in" (Landauer et al. 1998). Then SVD is applied. The matrix is decomposed 

into the product of three other matrices: two of derived orthogonal factor values or the 

rows and columns respectively and a diagonal scaling matrix. the dimensionality of 
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the solution is reduced, by deleting entries from the diagonal matrix, generally the 

smallest entries are removed first. This dimension reduction has the effect that words 

that appear in similar contexts are represented by similar feature vectors. Then a 

measure of similarity (usually the cosine between vectors) is computed in the latent, 

or reduced dimensional, space. 

LSA can be viewed as a tool to characterize the semantic contents of words 

and documents, but in addition it can be viewed as a model of semantic knowledge 

representation and semantic word learning (Foltz 1998). While LSA has been able to 

simulate human abilities and comprehension in a variety of experiments, there is still 

some controversy over its validity as a model. The main objection seems to center 

around the fact that it ignores word order and syntax. Objections raised by Perfetti 

(1998), have been refuted by Landauer (1999). 

LSA does not claim to be a complete model of discourse processing. Laudauer 

(1999) points out that the more general class of models, to which LSA belongs, 

associative learning and spectral decomposition, are well understood in terms of 

formal modeling properties and as existing phenomena at both psychological and 

physiological levels.  

LSA has been used for a number of natural language processing tasks 

including information retrieval (for which it was originally developed), 

summarization (Ando 2000, Ando et al. 2000), text segmentation (Choi et al. 2001), 

measuring text coherence (Foltz 1998, Foltz et al. 1998) and discourse annotation for 

team communication (Martin and Foltz 2004). 
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Ando (2000) proposed an iterative scaling algorithm to replace SVD and 

showed significant increase in precision on a text classification task. Her algorithm 

iteratively scales vectors and computes eigenvectors to create basis vectors for a 

reduced space. She uses a log-likelihood model to choose the number of dimensions, 

which improves over LSA where no empirical method is proposed to select the 

number of retained dimensions. 

In order to address some shortcomings of LSA due to "unsatisfactory 

statistical foundation" Hofmann (1999) introduces Probabilistic Latent Semantic 

Analysis (PLSA), based on the likelihood principle. In experiments on four document 

collections, PLSA performed better than LSA, term frequency (tf), and term 

frequency times inverse document frequency (tf*idf), in retrieval tasks. (Term 

frequency and tf*idf are two standard term weighting schemes used with the vector 

space model for information retrieval.) The core of PLSA is a "latent variable model 

for general co-occurrence data which associates an unobserved class variable with 

each observation," called an 'aspect model.' He uses a tempered EM algorithm for 

maximum likelihood estimation of the latent variable to avoid over-fitting.  

10.3.2 LSA Applied to the Current Setting 

 

We would like to determine to what extent LSA can aid in our current tasks of 

classifying medical web pages in terms of type and in terms of reliability. We would 

like to test three hypotheses:  

1. Pages of a given type or reliability level are semantically similar to other web 

pages of the same type or reliability level within the medical domain. 
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2. LSA can provide features, which will be useful in classifying medical web 

pages by type and reliability. 

3. LSA's measure of semantic similarity is a useful measure of the distance 

between medical web pages for clustering by type or reliability. 

In order to test these hypotheses, we must first consider some parameters for LSA. 

1. What semantic space to use? 

2. What dimension to reduce to? 

3. What constitutes a document (paragraph or page)?  

In general the more text LSA can train on the better, so as to have more 

examples of co-occurrences to learn. However this is only true to the extent that the 

knowledge to be gained from the training data will be helpful when applied to the 

task at hand. The IBS corpus is relatively small, 70 web pages, so we decided to 

experiment with adding a significant amount of training data. The TASA corpus was 

created from paragraphs of high school level text books in a range of subjects.  

While the optimal dimension for the semantic space may vary with the task 

and the best way to find it is an open research question, we have elected to hold this 

parameter stable at approximately 300, because this is a dimension that has been 

shown to work well on other natural language tasks (personal communication with P. 

Foltz). Reduction to dimensions below 300 would be a fairly straightforward task, 

which would not require rerunning of the semantic space, and thus would be 

appropriate for near term future research.  
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One of the downsides to LSA is the time and space complexity of the SVD 

computation. However the algorithm has been parallelized and with today’s 

computers, quite large spaces (up to 0.5 billion documents) can be run in reasonable 

time. Clearly re-computing SVD repeatedly is not practical, so from our experiments 

with different semantic spaces it is hoped that a semantic space useful for the task of 

categorizing medical web pages by type and reliability can be created. Once the space 

is created, the vector of any new document with respect to the space can be created 

quickly and its distance from other vectors determined. 

  A discussion of the corpora and the semantics spaces created from them can 

be found in the Data section. LSA was used to create features for input into the 

classifiers and a discussion of these can be found in the Features section, where the 

second hypothesis, that LSA can provide useful features, is addressed. LSA was also 

used to provide the distance metric for clustering during the data exploration phase 

(Data Exploration section addresses third hypothesis: that LSA’s semantic similarity 

can be useful for clustering pages by type and reliability) and for the N-Closest 

algorithm (a K-NN classifier) described in the next section, where the first 

hypothesis, that semantic similarity is useful for classification by type and reliability, 

is addressed. 

10.4 N-Closest 

 

 My N-Closest classifier is a version of the commonly used k nearest neighbor 

(k-NN) algorithm. This classifier is also discussed in the Data section, where it is 

used to test hypotheses about semantic spaces. Yang (1999) found that the k-NN 
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algorithm was one of the top performers on standard text classification task and that 

“its robustness in scaling-up and dealing with harder problems, and its computational 

efficiency made it the method of choice for approaching very large and noisy 

categorization problems.”  (Her task and data are the same as Joachins’ (Joachins 

2002), where his SVM performed better than k-NN.)  

 The algorithm takes a document P, finds the n closest documents in the 

collection, looks up their classes and computes a predicted class for P based on the 

sum of the class weights for the n closest documents. In my implementation the 

closeness of P to the other documents in the collection is measured by the cosine of 

the angle between document vectors in a given LSA created semantic space. The 

class weights, used to predict the class for P, are the cosines. For example, if n is 3 

and P is closest to document A of class R with cosine 0.7 and document B with class 

O and cosine 0.5 and document C with class O and cosine 0.4, the predicted class for 

P will be O, since the sum of the cosines for close documents of class O (0.9) is 

greater than that of class R (0.7). In the same scenario, if n is 1 or 2, the predicted 

class for P would be R. 

 I chose to use this classifier because, like Naïve Bayes, it has performed well 

on similar tasks in previous studies, is relatively easy to implement, and was also 

suitable for testing hypotheses about LSA semantic spaces.  

 The parameters for this classifier are n, the number of neighbors to use for 

class prediction (sometimes called the radius), and the weights. The best radius for a 

given task needs to be learned by the classifier, while the weighting scheme, 
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generally a distance measure, is determined in advance. Future work might include 

experimenting with different weighting schemes and applying N-Closest to the 

feature vectors created for the documents using my feature selection process (see 

Features section). 

  

10.5 Evaluating Binary Classifiers: Precision, Recall, Accuracy, and Kappa 

 

 To evaluate the results of a supervised binary classifier, we first create a 

contingency table. Suppose we have two classes, R and O, with the classes already 

assigned to the data instances. The output of our classifier will assign a class to each 

instance and we can summarize the results in the table (Table 27). 

Table 27. Confusion Matrix. 

 R is correct O is correct 

R was assigned a b 

O was assigned c d 

 

We can now use this table to compute accuracy, precision, recall and Cohen’s Kappa. 

 

10.5.1 Accuracy 

 

Accuracy is defined as the proportion of correctly classified instances 

(Manning and Schutze 2000). Accuracy can be computed from the table as: 

(a+d)/(a+b+c+d) 

 

For data where the classes are evenly distributed accuracy is a reasonable measure of 

the performance of the classifier. However, when the classes are skewed, accuracy 

can be misleading (particularly if the baseline is not clearly stated). For example, if 10 

percent of the instances are from class R and 90 percent from class O, and our 
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classifier classifies all instances as O, we could report accuracy of 0.90 (which is 

equal to the baseline). In the case of skewed categories it is often better to use 

Cohen’s Kappa. Accuracy is sometimes referred to as percent agreement. Accuracy 

varies between 0 and 1, with 0 indicating no agreement and 1 indicating perfect 

agreement. 

10.5.2 Cohen’s Kappa Statistic to Measure Agreement 

 

Cohen’s Kappa (Cohen 1960) also measures agreement, but has the advantage 

of taking chance agreement into account. It is commonly used to measure inter-coder 

agreement for discourse and dialogue studies. Cohen’s Kappa is defined: 

 

! =  P(o) – P(e) 

       1 – P(e) 

 

Where P(o) is the proportion of  agreement observed, and P(e) is the proportion of 

agreement expected by chance. To compute Kappa from our contingency table P(o) is 

equal to accuracy (as defined above) and P(e) is computed: 

 

First compute: 

 

The expected chance agreement for R, E(R): ((a+b)*(a+c))/(a+b+c+d) 

 

The expected chance agreement for O, E(O): ((d+b)*(d+c))/(a+b+c+d) 

 

Then: 

P(e) = (E(R) + E(O))/(a+b+c+d) 

  

Or in one formula: 

(((a+b)*(a+c)) + ((d+b)*(d+c)))/(a+b+c+d)^2 
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 Kappa ranges between -1 and 1, with 1 indicating perfect agreement and 0 

indicating agreement equal to chance. The interpretation of kappa is somewhat 

controversial and various scales have been proposed. On one end, Krippendorff’s 

(1980) scale allows tentative conclusions for kappa between 0.67 and 0.8, and 

definitive conclusions above 0.8. On the other end Grove et al. (1981) consider kappa 

above 0.6 acceptable. A scale in between these was proposed by Landis and Koch 

(1977) considers kappa between 0.41 and 0.6 to indicate moderate agreement, kappa 

between 0.61 and 0.8 to indicate substantial agreement and kappa above 0.8 to 

indicate almost perfect agreement.  

10.5.3 Precision and Recall 

 

 Precision and recall are two complementary measures commonly used in 

Information Retrieval to measure the performance of a system. While accuracy and 

kappa summarize the systems performance, precision and recall are computed for 

each class. Suppose we want to find all of the instances of class R in a universe that is 

the union of the instances of class R and class O. Our classifier picks out a set of 

instances from the universe and says they are in class R. Precision is the proportion of 

the selected instances which are really in class R. Recall is the proportion of the total 

instances which are actually in class R that our classifier selected. Precision and recall 

can also be computed using the contingency table: 

 

Precision for class R: a/(a+b) 

Precision for class O: d/(c+d) 

 

Recall for class R: a/(a+c) 
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Recall for class O: d/(b+d) 

 

 In practice there is generally a trade off between precision and recall, which is 

why they are usually reported together. For example, if our classifier puts all of the 

instances into class R, the recall for class R is 100%, but the precision will probably 

suffer (unless all of the instances really do belong to R). On the other hand, if our 

classifier classifies only one instance as class R and the instance really is in R, the 

precision will be 100%, but the recall will suffer (unless there is only one instance 

that really belongs to R). This trade off is sometimes plotted when results are reported 

and is called the “precision-recall curve.” 

 One of the ways precision and recall can be combined into one measure of 

overall performance called the F-Measure, it is the harmonic mean of precision (P) 

and recall (R): 

F = 2PR/(P+R) 

 

When R = P, the F-measure is equivalent to the break-even point (Yang 1999). 

 

 Precision and recall can always be computed when the number of instances in 

the universe belonging to each class is known. However, when document collection 

become very large, as in the case of the Web, it may not be possible to know how 

many instances of a given class are out there, so recall may be impossible to compute.  

 All of the performance measures discussed above can be generalized to multi-

class classifier. I have presented the binary versions here for simplicity and because 

all of the results reported in this work are from binary classifications. 
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RESULTS 

 

In order to interpret the results of my system, we first summarize the results of 

related work. Most of the related work in the medical domain explores information 

quality indicators manually. Two authors implemented systems, Price (Price 1999, 

Price and Hersh 1999) and Aphinyanaphongs and Aliferis (2003). Of the two, only 

Aphinyanaphongs and Aliferis provide numeric measures of system performance 

(precision and recall). Price reports that her system “successfully separated desirable 

from undesirable pages.” 

In the studies by computer scientists on information quality in other domains, 

Amento, Terveen, and Hill (2000) report precision for individual features. Since their 

system returns the results of Web search, their corpus is the entire Web making the 

computation of recall impossible. Zhu and Gauch (2000) report precision on 

individual features and on combinations of features; again, recall is not reported 

because they are classifying Web search results. Tang et al. (2003) and Ng et al 

(2003) report the “Correct-Rate” for logistic regression and discriminant analysis for 

each of their nine quality criteria components and more in-depth analyses of the 

“depth” and “objectivity” criteria, but no overall results. 

For the systems designed by other computer scientists to perform other types 

of classification tasks, Pang, Lee, and Vaithyanathan (2002) and Turney (2002) report 

accuracy for their systems. Joachims (2002) reports micro-averaged precision over 

several categories for each of the algorithms he implemented. Pantel and Lin (1998) 
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report false positives, false negatives and error rates for their spam detection system. 

Overall, they also report the percent correctly classified. 

The table below (Table 28) summarizes the results discussed above. The 

percentage in parentheses in the “Best Results” column give the baseline, if one was 

available. The algorithm in the “Algorithm” column is the one for which results are 

reported (in some cases several algorithms were used, as discussed in the Related 

Work section). Where “N/A” appears no standard machine learning algorithm was 

used for classification. 

 

Table 28. Summary of Best Results from Related Work. 

 Study Corpus Features Algorithm Measure Best 

Results 

Aph. 

And 

Aliferis 

Medical 

Articles 

15803 

Articles 

Word 

Frequencies 

Raw, wtd. 

SVM Precision  68% 

(40%) 

Amento 

et al. 

Web 

Entertainment 

Web 10 N/A Precision 

Indiv. 

Feat. 

76% 

(N/A) 

Zhu and 

Gauch 

Web General 

Topics 

20 Web 

Sites 

6 N/A Precision 55.3% 

(44.3%) 

Tang et 

al. and 

Ng et al. 

New Articles 1000 

Articles 

150+ 

9 Criteria 

N/A Logistic 

Regression 

 

83% 

(N/A) 

Pang et 

al. 

Reviews 1400 

Reviews 

Unigrams 

(Words) 

SVM Accuracy 82.9 % 

(69%) 

Turney Reviews 410 

Reviews 

Extracted 

Phrases 

Unspvd. Accuracy 74.39% 

(59%) 

Joachims Topic 

Classification 

Reuters 

WebKB 

Ohsumed 

Weighted 

Term 

Frequenies 

SVM Micro-

avg. 

Precision 

91.6 

(74.1%) 

Pantel 

and Lin 

Spam 

Detection 

999 

Emails 

Word 

Frequencies 

NB Percent 

correct 

92% 

(56%) 
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 The table below (Table 29) summarizes my best results (excluding N-Closest 

results) for the classification tasks on each corpus. The accuracies are all above the 

baselines and range from 77.8% to 98%, which compares favorably with the results 

from previous work. This is with the caveat that most of my categories are skewed, 

which can distort accuracy results. My precision results for most classes are also 

inline with previous work.  

 

Table 29. Summary of Best Results for Work in this Thesis. 

Task Corpus Algorithm Features Kappa Precision Accuracy Baseline 

R-O IBS SVM CorrR 0.6849 1.0/0.83 87.0% 65% 

U-O IBS NB IG 0.7202 0.89/0.93 92.8% 82% 

C-O IBS SVM IG 0.7432 0.94/0.89 89.9% 69% 

L-O IBS NB NB 0.7698 0.79/0.96 92.8% 80% 

P-O IBS NB IG 0.5382 0.57/0.95 78.3% 72% 

R-O MMED NB NB 0.5141 0.71/0.82 77.8% 63% 

U-O MMED NB IG 0.5052 0.68/0.90 86.9% 81% 

C-O MMED SVM IG 0.7402 1.0/0.98 98.0% 94% 

L-O MMED NB IG 0.2667 0.50/0.93 90.9% 90% 

P-O MMED SVM IG 0.5729 0.81/0.82 81.8% 65% 

 

 

 Overall, it appears the Naïve Bayes classifier with the features selected using 

Information Gain with respect to the class works best. However, there are enough 

cases where the Support Vector Machine was best to make it worthwhile to consider 

using a meta-classifier with a voting scheme in the future. 

10.6 Correlations of Page Types with Reliability 

 

 I originally hypothesized that page type would be useful for processing the 

pages to determine reliability, because different types of pages might need different 

processing. At this point that question is still open and will require future 
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investigation. In my discussion in the definition section I indicated that commercial 

pages, by their nature, were more likely to be unreliable and patient leaflets were 

more likely to be reliable. In order to test these assumptions, I ran correlations 

between the reliability and type classes. The table below shows the significant 

correlations and confirms my assumptions. (Only the statistically significant 

correlations are shown.) 

Table 30. Correlations Between Reliability and Page Type. 

Corpus Reliability Commercial Link Patient Leaflet 

IBS Reliable -0.483**   

IBS Unreliable 0.527**  -0.283* 

MMED100 Reliable   0.599** 

MMED100 Unreliable 0.250*  -0.231* 

* Correlation is significant at the 0.05 level (2-tailed) 

** Correlation is significant at the 0.01 level (2-tailed) 

 

10.7 Varying the training set for U-O, MMED 100 and IBS 

 

In order to see how well my results generalize to other corpora, I trained on 

one of the corpora and tested on the other. At this point I have only done this for a 

very limited example, the U-O task on two feature sets, so additional exploration 

needs to be conducted. The short and not very surprising answer is not very well. 

Some of the features in the IBS RU correlations overfit the IBS training data. These 

results point to the need to annotate and train on the entire MMED corpus, before 

anything definitive can be said here. (All entries in Table 31 and Table 32 are 

Cohen’s Kappa.) 
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Table 31. MMED100 Corpus Trained on IBS Corpus. 

MMED100 Train on IBS Train on IBS Train on  

MMED100 

Train on  

MMED100 

U-O 254 RU 93 254 RU 93 

DT 0.1791 0.1791 0.0774 0.16 

NB 0.1149 0.2979 0.1025 -0.0032 

SMO -0.0405 0.0472 0.2531 0.2205 

 

 

Table 32. IBS Corpus Trained on MMED100 Corpus. 

IBS Train on  

MMED100 

Train on  

MMED100  

Train on 

IBS 

Train on  

IBS 

U-O 254 RU 93 254 RU 93 

DT 0.3611 0.1481 0.2441 0.4263 

NB 0.0619 0.0952 0.3374 0.5306 

SMO 0.3947 0.4628 0.5681 0.5774 

 

10.8 Dividing MMED100 by query for U-O 

 

 In order to test whether training the classifier on the IBS corpus works better 

on some of the queries in the MMED100 corpus than on others, I ran some limited 

tests using the U-O classification task. I divided the MMED100 feature vectors into 

10 files, each containing ten instances from on query. The table below has the kappa 

statistics for each set trained on the IBS corpus with two feature sets as in the 

experiment above. All results are using the SMO algorithm.  I have included the 

number of pages tagged as unreliable (“#U”) in each set to aid in interpretation of the 

results. The results shown in Table 33 are Cohen’s Kappa. 

 The same issues arise here: this is a very limited study in terms of algorithm 

and feature sets. I does provide additional confirmation of the need to train on a more 

varied corpus, such as the whole MMED corpus, if one wishes to classify data 

coming from a variety of queries, even within the medical domain. 
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Table 33. MMED100 Corpus Divided by Query for U-O. 

SMO-

IBS 

01 

AD 

02 

ALZ 

03 

E 

04 

FIB 

05 

OBE 

06 

PC 

07 

COL 

08 

IBS 

09 

LYME 

10 

LB 

254 0 -0.1538 0 0.2 -0.1111 0 -0.125 0.2 -0.1538 0 

RU93 0 0 0 0.2 0 0 0.1176 0 -0.1111 0 

#U 0 2 0 5 1 0 6 2 1 1 

 

 

10.9  Testing the Hypotheses about LSA 

 

 In order to test the hypotheses, I chose two classification tasks and used my 

N-closest (k-nearest neighbor) algorithm. The tasks: 

1. R-O: classify the most reliable pages as 'R' and all other pages as 'O'. 

2. U-O: classify the unreliable pages as 'U' and all other pages as 'O'. 

The R-O task is easier because the categories are more evenly distributed (R is 

approximately 35%), while the categories in the U-O task are quite skewed (U is 

approximately 15%). 

 For a given document, the N-closest algorithm calls LSA to compute the most 

semantically similar pages. Here semantic similarity is measured by the cosine 

between the vector or the given document and all other documents in the space. The r 

closest documents are chosen, their classes are looked up and the sum of the cosines 

for each class is computed. The class whose sum is the largest is then predicted as the 

correct class. I run the algorithm for all documents in a corpus and using the actual 

and predicted classes for each document I compute precision, recall and a confusion 

matrix for each class. This allows me to compute Cohen's kappa statistic to measure 

overall chance corrected agreement for each run. On each corpus I tested four radii: 
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10, 5, 3, and 1. The results are in the tables below, with the best semantic space for 

each radius shaded. 

Table 34. N-Closest, Best Semantic Space for each Radius, IBS Corpus. 

IBS IBS-Only IBS-Tasa IBS-Para Mmed-Para MMed-

whole 

Docs 70 44556 3439 37543 962 

Fold in  -- -- 70 70 70 

R-O 10 0.4615 0.1358 0.2391 0.2582 0.0541 

R-O 5 0.4369 0.2352 0.1998 0.4767 0.2274 

R-O 3 0.4234 0.4080 0.2222 0.5919 0.3080 

R-O 1 0.5636 0.2582 0.3536 0.4512 0.2843 

U-O 10 -0.0273 0.0000 0.1195 0.1056 0.1954 

U-O 5 0.2496 0.1939 0.3259 0.4296 0.3259 

U-O 3 0.3259 0.2566 0.3831 0.3672 0.3568 

U-O 1 0.1966 0.2789 0.4901 0.1975 0.1966 

 

 

Table 35. N-Closest, Best Semantic Space  

for each Radius, MMED100 Corpus 

MMED100 Whole Para 

Docs 962 37543 

Fold in -- 962 

R-O 10 0.3761 0.4258 

R-O 5 0.4240 0.5388 

R-O 3 0.4240 0.4631 

R-O 1 0.2506 0.3907 

U-O 10 0.4236 0.3737 

U-O 5 0.4783 0.5469 

U-O 3 0.4269 0.4991 

U-O 1 0.4298 0.3352 

 

 

Hypothesis 1: The general assumption that paragraphs are the best units of 

context when creating a semantic space holds for web pages seems generally true. For 

the MMED100 corpus the results are fairly clear. The paragraph semantic space has 

higher kappas in all but one case. For the IBS corpus the results depend on whether 

the IBS or the MMED corpus underlies the semantic space. In the case where the 
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semantic space is created based on the IBS corpus the paragraph space performs 

better on the U-O task and the whole document space performs better on the R-O 

task. This might be interpreted as a preference for the paragraph corpus, since the U-

O task is more difficult. In the case where the underlying space is the MMED corpus 

the paragraph space performs better. Thus, in general it appears that, even with the 

parsing imprecision, paragraphs are the preferred units of context for these tasks 

using web pages. 

 Hypothesis 2: The general assumption that larger document collections are 

better for training LSA is weakly shown by the fact that the MMEDpara space 

performs slightly better than any of the others. It is clearly false for semantic spaces 

created from outside the domain as discussed below. It is possible that relatively good 

performance in certain cases on the smaller IBSonly and IBSpara spaces is due to 

over-fitting and that if documents from outside the IBS corpus were folded in that we 

would see degradation in performance. This would need to be tested before being able 

to provide a more definite answer. 

 Hypothesis 3:  That larger document collections provide the greatest 

improvement if they are from the same domain holds here. The importance of using a 

domain appropriate to the type of documents whose semantic similarity one wishes to 

compare is highlighted by the fact that none of the best results came from the IBStasa 

space. It seems clear that a space made of up web pages in the same domain works 

better than a collection of documents from an unrelated domain, even if the 

documents are fairly general in nature.  
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10.9.1 Conclusion 

 

 Based on my results for these classification tasks in the medical domain on the 

web, it appears that LSA semantic spaces are best built using larger collections of 

documents from the medical domain on the web with paragraphs as the unit of 

context. 

10.10 Results for the N-Closest Algorithm 

 

None of the results for the N-Closest algorithm were reported above in my 

summary of the best results, however when compared to the other algorithms some of 

its results are respectable. In fact, the kappa statistics for the MMED100 corpus in the 

R-O and U-O classes are better than the best results I obtained using other methods. 

In the Data section we used N-Closest to compare semantic spaces, finding that the 

spaces created with paragraph-level context worked best. Now we revisit these results 

in Table 36, limited to the MMEDpara space to compare the kappa statistics for the 

R-O and U-O tasks. The best results are shown in bold. 

Table 36. N-Closest Best Results. 

IBS MMMED-

Para 

MMED- 

Para 

Docs 37543 37543 

Fold in  70 962 

Corpus IBS MMED100 

R-O 10 0.2582 0.4258 

R-O 5 0.4767 0.5388 

R-O 3 0.5919 0.4631 

R-O 1 0.4512 0.3907 

U-O 10 0.1056 0.3737 

U-O 5 0.4296 0.5469 

U-O 3 0.3672 0.4991 

U-O 1 0.1975 0.3352 
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 Based on these results, the N-Closest algorithm should be tested on the C-O, 

L-O, and P-O type classifications and should probably be considered for inclusion in 

a meta-classifier based on voting.  

10.11 Results for Classifiers on Varied Feature Sets 

 

 The details on these results are at the end of the Features section and the best 

are reported at the beginning of this section. 
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11 CONCLUSION 

 
In this thesis I have conducted a thorough exploration of the issues related to 

creating a system to assess the reliability of medical web pages from the point of view 

of the consumer. I have implemented a system that does a respectable job of 

identifying highly reliable and unreliable web pages and different types of web pages. 

I have shown that, while the task if a fairly difficult one, a workable automatic 

solution is possible.  

I have also explored a variety of machine learning techniques to classify 

medical web pages by type and by reliability. While I cannot offer a definitive answer 

as to which algorithm performs best, the next logical step would be to wrap the best 

algorithms and feature sets into a met-algorithm based on voting.  

I have created a large set of empirically tested features, based on criteria from 

library and information scientists, previous work in this and similar areas of research, 

my intuition and exploration of the data. This set of features provides a solid basis to 

expand and refine for improved performance on this task and on similar tasks.  

In order to develop and test the feature set and algorithms, I have created two 

annotated data sets, which contributes to the growing body of corpora available to 

researchers. I also create a number of semantics spaces using LSA and tested several 

hypotheses about the size and character of the semantic spaces that would best serve 

for web pages in the medical domain. I was able to show that, even in the case of 

imprecisely parsed paragraphs, paragraphs are the best unit of context and that larger 

spaces are only better when they are constructed using an appropriate domain. 
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I plan to make my code and data freely available to other researchers 

interested in pursuing research on medical Web pages. I also plan to pursue the work 

outlined in the future research section below. 

11.1 Strengths of This Work 

 

 The main strengths of this work are: 

• Defining the task in such a way that if can be automatically implemented and 

incorporating page type, 

• The empirical testing of a large set of features, 

• Incorporating linguistic features, features from the topology of the Web, and 

whole document similarity using Latent Semantic Analysis, 

• Testing a variety of algorithms to with several feature sets on several tasks, 

• Getting respectable results on a difficult task. 

11.2 Weaknesses of This Work 

 

 The main weaknesses of this work are: 

• The size of the data set used up to this point, 

• The data was annotated by only one person, 

Probably the biggest weakness with this work and most of the related work cited 

is the size of the data set. Many very good features occur only infrequently in a 

small corpus, so they cannot really be properly tested. I have endeavored to 

overcome this in two ways: first, by incorporating features from a larger corpus 

through the use of semantics spaces created by Latent Semantic Analysis, and 
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second, by setting up the system so that as soon as more annotated data is 

available it will be easy to run and test it on the new data. 
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12 FUTURE WORK 

 

A number of tasks for future work are discussed in various sections of this 

thesis as they came up. Here I will summarize those and discuss other planned work 

here, divided into short-term and long term work. 

12.1 Short-term 

 

One of the first things that should be done is to conduct an annotation study 

with multiple annotators and annotate more data to train the system. The definitions 

section of this thesis can be used as a base for creating annotation instructions and 

medical librarians and medical professionals should review the instructions to provide 

expert advice before annotation begins. In the process of doing this, the categories for 

types of pages could be redefined and possibly collapsed. 

Along with this, in order to obtain more training data, the investigation of the 

possibility of using unsupervised or semi-supervised algorithms to make better use of 

the training data already available. 

 Next some refinement and expansion of the feature set, which might include: 

• More linguistic features, 

• A modified coherence measure, 

• Better date and author extraction, 

• Number and frequency of words in all capital letters, 

• Modification of the word lists, 

• More precise parsing of domain names, 

 

Then wrapping the best algorithms and feature sets into meta-classifier based on 

voting that takes into account page type and make use of the N-closest algorithms. 

Followed by the creation of a user interface to report the results. 
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This short-term work directly addresses the major weaknesses, as described 

above. 

12.2 Long-term 

 

This section of future work goes beyond addressing weaknesses of the current 

system to address things that follow logically or which I would like to do in the future 

to continue this work. 

 One possibility would be to consider moving to use a “site,” rather than a 

“page” as the unit of analysis. This would provide the opportunity to examine other 

pages on the site pages for such things as bias in the "About Us." It could include 

more exploration of the web topology surrounding a site:  

• Following the links that go off the site, determining the reliability of the sites 

they point to and incorporating it into the feature set, 

 

• Looking for cliques in the web graph, i.e. does the current site link only to a 

small interlocking community of sites. 

 

  I would like to incorporate a way to verify specific statements on a given page 

(as was outlined in my thesis proposal). This might include more direct checking of 

parts of the text of a patient leaflet to determine the extent of compliance with the best 

practices of Evidence Based Medicine. 

I hope to explore the extent to which the system can be generalized, most 

likely first to new domains and then to the Web as a whole. 

I would be interested in exploring if it would be effective to find prototypical 

highly reliable and highly unreliable pages to use to create seeds for clustering. 

Possibly using these to modify the N-closest algorithm. 
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 Finally, there are also some LSA hypotheses that should be tested: 

 

• That 300 really is the best dimension for the semantic space. 

 

• That creating a large semantic space with documents in the same domain and 

then computing the vector of a new document with respect to that space will 

work as well as creating a new semantic space containing the new document.  

 

• Testing Ando's Iterative Residual Rescaling (IRR) in place of Singular Value 

Decomposition (SVM) (Ando 2000). 
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