Machine Learning, Data Mining, and Knowledge Discovery: An Introduction

AHPCRC Workshop - 8/17/10 - Dr. Martin
Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets
http://www.kdnuggets.com/dataMiningCourse/
Course Outline

- **Machine Learning**
 - input, representation, decision trees, other learning algorithms
- **Weka**
 - machine learning workbench
- **Data Mining**
 - associations, deviation detection, clustering, visualization
- **Case Studies**
 - targeted marketing, genomic microarrays
 - Data Mining, Privacy and Security
- **Final Project: Microarray Data Mining Competition**
Lesson Outline

- **Introduction: Data Flood**
- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining Tasks
Trends leading to Data Flood

- More data is generated:
 - Bank, telecom, other business transactions ...
 - Scientific data: astronomy, biology, etc
 - Web, text, and e-commerce
- Much faster than our ability to analyze it in a useful or meaningful way
Big Data Examples

- Europe's Very Long Baseline Interferometry (VLBI) has 16 telescopes, each of which produces **1 Gigabit/second** of astronomical data over a 25-day observation session
 - storage and analysis a big problem
- AT&T handles billions of calls per day
 - so much data, it cannot be all stored -- analysis has to be done “on the fly”, on streaming data
Largest databases in 2003

- Commercial databases:
 - Winter Corp. 2003 Survey: France Telecom has largest decision-support DB, ~30TB; AT&T ~ 26 TB

- Web
 - Alexa internet archive: 7 years of data, 500 TB
 - Google searches 4+ Billion pages, many hundreds TB
 - Internet Archive (www.archive.org), ~ 300 TB
From terabytes to exabytes to ...

- US produces ~40% of new stored data worldwide

- 2010 projection: 988 exabytes
Largest Databases in 2005

Winter Corp. 2005 Commercial Database Survey:

- Max Planck Inst. for Meteorology, 222 TB
- Yahoo ~ 100 TB (Largest Data Warehouse)
- AT&T ~ 94 TB

Data Growth

In 2 years, the size of the largest database TRIPLED!
Data Growth Rate

- Twice as much information was created in 2002 as in 1999 (~30% growth rate)
- Other growth rate estimates even higher
- Very little data will ever be looked at by a human

Knowledge Discovery is **NEEDED** to make sense and use of data.
Lesson Outline

- Introduction: Data Flood
- **Data Mining Application Examples**
- Data Mining & Knowledge Discovery
- Data Mining Tasks
Machine Learning / Data Mining
Application areas

- **Science**
 - astronomy, bioinformatics, drug discovery, ...

- **Business**
 - CRM (Customer Relationship management), fraud detection, e-commerce, manufacturing, sports/entertainment, telecom, targeted marketing, health care, ...

- **Web:**
 - search engines, advertising, web and text mining, recommender systems, spam filtering ...

- **Government**
 - surveillance, crime detection, profiling tax cheaters, ...
Application Areas

What do you think are some of the most important and widespread business applications of Data Mining?
Data Mining for Customer Modeling

- Customer Tasks:
 - attrition prediction
 - targeted marketing:
 - cross-sell, customer acquisition
 - credit-risk
 - fraud detection

- Industries
 - banking, telecom, retail sales, ...
Customer Attrition: Case Study

- Situation: Attrition rate at for mobile phone customers is around 25-30% a year!

- With this in mind, what is our task?
 - Assume we have customer information for the past N months.
Customer Attrition: Case Study

Task:

- Predict who is likely to attrite next month.
- Estimate customer value and what is the cost-effective offer to be made to this customer.
Customer Attrition Results

- Verizon Wireless built a customer data warehouse
- Identified potential attriters
- Developed multiple, regional models
- Targeted customers with high propensity to accept the offer
- Reduced attrition rate from over 2%/month to under 1.5%/month (huge impact, with >30 M subscribers)

(Reported in 2003)
Assessing Credit Risk: Case Study

- Situation: Person applies for a loan
- Task: Should a bank approve the loan?
- Note: People who have the best credit don’t need the loans, and people with worst credit are not likely to repay. Bank’s best customers are in the middle
Credit Risk - Results

- Banks develop credit models using variety of machine learning methods.
- Mortgage and credit card proliferation are the results of being able to successfully predict if a person is likely to default on a loan.
- Widely deployed in many countries.
e-commerce

- A person buys a book (product) at Amazon.com

What is the task?
Successful e-commerce – Case Study

▪ Task: Recommend other books (products) this person is likely to buy

▪ Amazon does clustering based on books bought:
 - customers who bought “Advances in Knowledge Discovery and Data Mining”, also bought “Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations”

▪ Recommendation program is quite successful
Unsuccessful e-commerce case study (KDD-Cup 2000)

- Data: clickstream and purchase data from Gazelle.com, legwear and legcare e-tailer
- Q: Characterize visitors who spend more than $12 on an average order at the site
- Dataset of 3,465 purchases, 1,831 customers
- Very interesting analysis by Cup participants
 - thousands of hours - $X,000,000 (Millions) of consulting
- Total sales -- $Y,000
- Obituary: Gazelle.com out of business, Aug 2000
- Google “kdd cup 2000 gazelle”
Genomic Microarrays – Case Study

Given microarray data for a number of samples (patients), can we
- Accurately diagnose the disease?
- Predict outcome for given treatment?
- Recommend best treatment?
Example: ALL/AML data

- 38 training cases, 34 test, ~7,000 genes
- 2 Classes: Acute Lymphoblastic Leukemia (ALL) vs Acute Myeloid Leukemia (AML)
- Use train data to build diagnostic model

Results on test data:
33/34 correct, 1 error may be mislabeled
Security and Fraud Detection - Case Study

- Credit Card Fraud Detection
- Detection of Money laundering
 - FAIS (US Treasury)
- Securities Fraud
 - NASDAQ KDD system
- Phone fraud
 - AT&T, Bell Atlantic, British Telecom/MCI
- Bio-terrorism detection at Salt Lake Olympics 2002
Data Mining and Privacy

- in 2006, NSA (National Security Agency) was reported to be mining years of call info, to identify terrorism networks
- Social network analysis has a potential to find networks
- Invasion of privacy – do you mind if your call information is in a gov database?
- What if NSA program finds one real suspect for 1,000 false leads? 1,000,000 false leads?
Problems Suitable for Data-Mining

- require knowledge-based decisions
- have a changing environment
- have sub-optimal current methods
- have accessible, sufficient, and relevant data
- provides high payoff for the right decisions!

Privacy considerations important if personal data is involved
Lesson Outline

- Introduction: Data Flood
- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining Tasks
Knowledge Discovery Definition

Knowledge Discovery in Data is the non-trivial process of identifying

- valid
- novel
- potentially useful
- and ultimately understandable patterns in data.

from Advances in Knowledge Discovery and Data Mining, Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, (Chapter 1), AAAI/MIT Press 1996
Related Fields

Machine Learning

Visualization

Data Mining and Knowledge Discovery

Statistics

Databases
Statistics, Machine Learning and Data Mining

- Statistics:
 - more theory-based
 - more focused on testing hypotheses

- Machine learning
 - more heuristic
 - focused on improving performance of a learning agent
 - also looks at real-time learning and robotics – areas not part of data mining

- Data Mining and Knowledge Discovery
 - integrates theory and heuristics
 - focus on the entire process of knowledge discovery, including data cleaning, learning, and integration and visualization of results

- Distinctions are fuzzy
Knowledge Discovery Process flow, according to CRISP-DM

see www.crisp-dm.org for more information
Historical Note: Many Names of Data Mining

- Data Fishing, Data Dredging: 1960-
 - used by Statistician (as bad name)
- Data Mining: 1990 --
 - used DB, business
 - in 2003 – bad image because of TIA
- Knowledge Discovery in Databases (1989-)
 - used by AI, Machine Learning Community
 - also Data Archaeology, Information Harvesting, Information Discovery, Knowledge Extraction, ...

Currently: Data Mining and Knowledge Discovery are used interchangeably
Lesson Outline

- Introduction: Data Flood
- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining Tasks
Major Data Mining Tasks

- **Classification**: predicting an item class
- **Clustering**: finding clusters in data
- **Associations**: e.g. A & B & C occur frequently
- **Visualization**: to facilitate human discovery
- **Summarization**: describing a group
- **Deviation Detection**: finding changes
- **Estimation**: predicting a continuous value
- **Link Analysis**: finding relationships
- …
Data Mining Tasks: Classification

Learn a method for predicting the instance class from pre-labeled (classified) instances

Many approaches:
Statistics,
Decision Trees,
Neural Networks,
...
Data Mining Tasks: Clustering

Find “natural” grouping of instances given un-labeled data
Summary:

- Technology trends lead to data flood
 - data mining is needed to make sense of data
- Data Mining has many applications, successful and not
- Knowledge Discovery Process
- Data Mining Tasks
 - classification, clustering, ...
More on Data Mining and Knowledge Discovery

KDnuggets.com

- News, Publications
- Software, Solutions
- Courses, Meetings, Education
- Publications, Websites, Datasets
- Companies, Jobs

...
Data Mining Jobs in KDnuggets

KDnuggets Job Ads

- Industry
- Academic

Year:
- 1997
- 1998
- 1999
- 2000
- 2001
- 2002
- 2003
- 2004
- 2005

Number of Job Ads:
- 0
- 20
- 40
- 60
- 80
- 100
- 120
- 140
- 160
- 180