Machine Learning, Data Mining, and Knowledge Discovery: An Introduction

AHPCRC Workshop - 8/16/11 - Dr. Martin Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets http://www.kdnuggets.com/data_mining_course/

Outline

- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining with Weka

Machine Learning / Data Mining Application areas

Science

- astronomy, bioinformatics, drug discovery, ...
- Business
- CRM (Customer Relationship management), fraud detection, ecommerce, manufacturing, sports/entertainment, telecom, targeted marketing, health care, ...
- Web:
- search engines, advertising, web and text mining, recommender systems, spam filtering ...
- Government
 - surveillance, crime detection, profiling tax cheaters, ...

Business: Data Mining for Customer Modeling

- Customer Tasks:
 - <u>attrition</u> prediction
 - targeted marketing:
 - cross-sell, customer acquisition
 - credit-risk
 - fraud detection
- Industries
 - banking, telecom, retail sales, ...

Customer Attrition: Case Study

- Situation: Attrition rate at for mobile phone customers is around 25-30% a year!
- With this in mind, what is our task?
 - Assume we have customer information for the past N months.

Customer Attrition: Case Study

Task:

- Predict who is likely to attrite next month.
- Estimate customer value and what is the cost-effective offer to be made to this customer.

Customer Attrition Results

- Verizon Wireless built a customer data warehouse
- Identified potential attriters
- Developed multiple, regional models
- Targeted customers with high propensity to accept the offer
- Reduced attrition rate from over 2%/month to under 1.5%/month (huge impact, with >30 M subscribers)
- (Reported in 2003)

e-commerce

A person buys a book (product) at Amazon.com

What is the task?

Successful e-commerce – Case Study

- Task: Recommend other books (products) this person is likely to buy
- Amazon does clustering based on books bought: • creatmers who bought "Advances in Knowledge Discovery and Data Mining", also bought "Data Mining: Practical Machine Learning Tools and Techniques with Java
- Recommendation program is quite successful

Unsuccessful e-commerce case study (KDD-Cup 2000)

- Data: clickstream and purchase data from Gazelle.com, legwear and legcare e-tailer
- Q: Characterize visitors who spend more than \$12 on an average order at the site
- Dataset of 3,465 purchases, 1,831 customers
- Very interesting analysis by Cup participants
- thousands of hours \$X,000,000 (Millions) of consulting
 Total sales -- \$Y,000
- Obituary: Gazelle.com out of business, Aug 2000
- Google "kdd cup 2000 gazelle"

Genomic Microarrays – Case Study

Given microarray data for a number of samples (patients), can we

- Accurately diagnose the disease?
- Predict outcome for given treatment?
- Recommend best treatment?

Example: ALL/AML data 38 training cases, 34 test, ~ 7,000 genes Classes: Acute Lymphoblastic Leukemia (ALL) vs Acute Myeloid Leukemia (AML) Use train data to build diagnostic model ALL Image: Acute Complexity of the test data: 3/34 correct, 1 error may be mislabeled

Security and Fraud Detection -Case Study • Credit Card Fraud Detection • Detection of Money laundering

- FAIS (US Treasury)
- Securities Fraud
- NASDAQ KDD system
- Phone fraud
- AT&T, Bell Atlantic, British Telecom/MCI
- Bio-terrorism detection at Salt Lake Olympics 2002

Data Mining and Privacy

- in 2006, NSA (National Security Agency) was reported to be mining years of call info, to identify terrorism networks
- Social network analysis has a potential to find networks
- Invasion of privacy do you mind if your call information is in a gov database?
- What if NSA program finds one real suspect for 1,000 false leads ? 1,000,000 false leads?

14

Problems Suitable for Data-Mining

- require knowledge-based decisions
- have a changing environment
- have sub-optimal current methods
- have accessible, sufficient, and relevant data
- provides high payoff for the right decisions!

Privacy considerations important if personal data is involved

Outline

- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining with Weka

Knowledge Discovery Definition

Knowledge Discovery in Data is the

non-trivial process of identifying

- valid
- novel
- potentially useful
- and ultimately understandable patterns in data.

from Advances in Knowledge Discovery and Data Mining, Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, (Chapter 1), AAAI/MIT Press 1996

Outline

- Data Mining Application Examples
- Data Mining & Knowledge Discovery
- Data Mining with Weka

Finding patterns

- Goal: programs that detect patterns and regularities in the data
- Strong patterns \Rightarrow good predictions
- Problem 1: most patterns are not interesting
- Problem 2: patterns may be inexact (or spurious)
- Problem 3: data may be garbled or missing

Machine learning techniques

19

- Algorithms for acquiring structural descriptions from examples
- Structural descriptions represent patterns explicitly
- Can be used to predict outcome in new situation
 - Can be used to understand and explain how prediction is derived (may be even more important)
- Methods originate from artificial intelligence, statistics, and research on databases ÷

Major Data Mining Tasks

- Classification: predicting an item class
- Clustering: finding clusters in data
- Associations: e.g. A & B & C occur frequently
- Visualization: to facilitate human discovery
- Summarization: describing a group
- Deviation Detection: finding changes
- Estimation: predicting a continuous value
- Link Analysis: finding relationships 23

• ...

But First...

- Components of the input:
 - Concepts: kinds of things that can be learned
 - Aim: intelligible and operational concept description
 - Instances: the individual, independent examples of a concept
 Note: more complicated forms of input are possible
 - Attributes: measuring aspects of an instance
 - We will focus on nominal and numeric ones

What's in an attribute?

- Each instance is described by a fixed predefined set of features, its "attributes"
 - But: number of attributes may vary in practice
- Possible solution: "irrelevant value" flag
- Related problem: existence of an attribute may depend of value of another one
- Possible attribute types ("levels of measurement"):
 Nominal, ordinal, interval and ratio

Outlook	Temperature	Humidity	Windy	Play	7
sunny	hot	high	false	no	Given past data,
sunny	hot	high	true	no	Can you come up
overcast	hot	high	false	yes	with the rules for
rainy	mild	high	false	yes	Play/Not Play ?
rainy	mild	normal	false	yes	
rainy	mild	normal	true	no	What is the game
overcast	mild	normal	true	yes	
sunny	mild	high	false	no	
sunny	mild	normal	false	yes	
rainy	mild	normal	false	yes	
sunny	mild	normal	true	yes	
overcast	mild	high	true	yes	
overcast	hot	normal	false	yes	7
rainy	mild	high	true	no	7

The weather problem

• Given this data, what are the rules for play/not play?

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

Ś	The we	ather p	roblem	1	
	Conditi	ons for pla	vina		
1	Outlook	Temperature	Humidity	Windy	Play
	Sunny	Hot	High	False	No
	Sunny	Hot	High	True	No
	Overcast	Hot	High	False	Yes
	Rainy	Mild	Normal	False	Yes
	If outlook	= sunny and hu	umidity = hig	h then play	= no
	If outlook	= rainy and wi	indy = true t	hen play = n	.0
	If outlook	= overcast the	en play = yes		
	If humidity	= normal the	n play = yes		
	If none of	the above the	play = yes		
witt	ten&eibe	34			

Weather da	ita with n	nivod a	ttribu	itoc
	-			
Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

Duloc	with mixed	ottributor		
Outlook				Die
	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
If outlook	= sunny and h	umidity > 83	then play =	no
If outlook	= rainy and w	indy = true f	then play = n	10
If outlook	= overcast th	en play = yes	3	
	y < 85 then pl			

Keep Exploring

- Try the iris data set
- Does it work better?