
A Case Against the GOT' O

William A . Wulf, Carnegie-Mellon Universit y

ABSTRACT

It has been proposed, by E . W . Dijkstra and others ,

that the goto statement in programming language i s
a principal culprit in programs which are diffi-

cult to understand, modify, and debug . More cor-
rectly, the argument is that it is possible to

use the goto to synthesize program structures with

these undesirable properties . Not all uses of th e

goto are to be considered harmful ; however, it i s

further argued that the "good" uses of the goto
fall into one of a small number of specific case s

which may be handled by specific language con-
structs . This paper summarizes the arguments i n
favor of eliminating the goto statement and som e

of the theoretical and practical implications o f
the proposal .

KEY WORDS AND PHRASES : programming, programmin g
languages, goto-less programming, structured pro-
gramming
CR CATEGORIES : 4 .2, 4 .22, 5 .2 4

INTRODUCTION

It has been suggested that the use of th e

goto construct is undesirable, is bad programmin g
practice, and that at least one measure of th e

' quality ' of a program is inversely related t o

the number of goto statements contained in it .

The rationale behind this suggestion is that i t
is possible to use the goto in ways which obscur e

the logical structure of a program, thus making
it difficult to understand, modify, debug, and/o r

prove its correctness . It is quite clear that no t
all uses of the &oto are obscure, but the hypoth-
esis is that these situations fall into one of a

small number of cases and therefore explicit an d

inherently well-structured language construct s

may be introduced to handle them . Although the

This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary o f

Defense (F44620-70-C-0107) and is monitored by
the Air Force Office of Scientific Research .

suggestion to ban the goto appears to have been a

part of the computing folklore for several years ,
to this author's knowledge the suggestion wa s
first made in print by Professor E . W . Dijkstra in
a letter to the editor of the _Communications o f
the ACM in 1968 (1) .

In this paper we shall examine the rational e

for the elimination of the Soto in programing

languages, and some of the theoretical and practi-
cal implications of its (total) elimination .

RATIONALE

At one level, the rationale for eliminatin g

the poto has already been given in the introduc-
tion . Namely, it is possible to use the goto in a

manner which obscures the logical structure of a
program to a point where it becomes virtually im-

possible to understand (1,3,4), It is not claimed
that every use of the goto obscures the logica l
structure of a program ; it is only claimed that i t

is possible to use the Soto to fabricate a "rat' s

nest" of control flow which has the undesirabl e

properties mentioned above . Hence this argumen t
addresses the use of the goto rather than the got o
itself .

As the basis for a proposal to totally elimi-
nate the poto this argument is somewhat weak . I t
might reasonably be argued that the undesirabl e

consequences of unrestricted branching may b e
eliminated by enforcing restrictions on the use o f
the poto rather than eliminating the construct .

However, it will be seen that any rational set o f
restrictions is equivalent to eliminating the con-
struct if an adequate set of other control primi-

tives is provided . The strong reasons for elim-

inating the goto arise in the context of more posi-
tive proposals for a programming methodology whic h
makes the goto unnecessary . It is not the purpos e
of this paper to explicate these methodologie s

(variously called "structured programming " , "con-
structive programming", "stepwise refinement" ,

etc .) ; however, since the major justification fo r
eliminating the goto lies in this work, a fe w

words are in order .

63



It is, perhaps, pedantic to observe that th e

present practice of building large programming
systems is a mess . Most, if not all, of the major

operating systems, compilers, information systems ,

etc, developed in the last decade have been de -
livered late, have performed below expectation
(at least

	

initially),

	

and have been filled with
'bugs' .

	

This

	

situation

	

is

	

intolerable, and ha s

prompted

	

several researchers

	

((2,3,4), (5,6),

	

(7),
(8), (9)) to consider whether a programming meth-

odology might be developed to correct this situa-
tion . This work has proceeded from two premises :

1

	

Dijkstra speaks of our "human inability to
do much" (at one time) to point up th e

necessity of decomposing large system s

into smaller, more "human size" chunks .
This observation is hardly startling, an d

in fact, most programming languages in-

clude features (modules, subroutines, an d

macros, for example) to aid in the mechan-

ical aspects of this decomposition . How -

ever, the further observation that th e
particular decomposition chosen makes a

significant difference to the understand -

ability, modifiability, etc ., of a pro -
gram and that there is an a priori meth-

odology for choosing a "good" decomposi-

tion is less expected .

2

	

Dijkstra has also said that debugging ca n

show the presence of errors, but never
their absence . Thus ultimately we wil l

have to be able to prove the correctnes s

of the programs we construct (rather than

"debug" them) since their sheer size pro-
hibits exhaustive testing . Although som e

progress has been made on the automati c
proof of the correctness of programs (c .f . ,
(10), (11), (12), (23), (24)), this ap-

proach appears to be far from a practica l
reality . The methodology proposed b y

Dijkstra (and others) proceeds so that the
construction of a program guides a (com-
paratively) simple and intuitive proof of

its correctness .

The methodology of "constructive programming "

is quite simple and, in this context, best de -
scribed by an (partial) example . Let us consider

the problem of producing a KWIC' index . Construc-
tion of the program proceeds in a series of step s
in which each step is a refinement of some portio n

of a previous step . We start with a single state -

ment of the function to be performed :

*For those who may not be familiar with a KWI C

(key word in context) index, the following de-

scription is adequate for this paper .

A KWIC system accepts a set of lines . Eac h

line is an ordered set of words and each word is

an ordered set of characters . A word may be on e

of a set of uninteresting words ("a", "the", "of" ,

etc .), otherwise it is a key word, Any line ma y

be circularly shifted by removing its first wor d
and placing it at the end of the line . The KWI C

index system generates an ordered (alphabeticall y
by the first word) listing of all circular shift s

of the input lines such that no line in the out -

put begins with an uninteresting word .

Step 1 : PRINTKWI C

We may think of this as being an instruction in a

language (or machine) in which the notion of gen-
erating a KWIC index is primitive . Since this

operation is not primitive in most practical lan-

guages, we proceed to define it :

Step 2 : PRINTKWIC : generate and save al l
interesting circular

shift s

alphabetize the saved
line s

print alphabetized lines

Again, we may think of each of these lines as be-

ing an instruction in an appropriate language ; an d

again, since they are not primitive in most exist -
ing languages, we must define them ; for example :

Step 3a : generate and save all interesting
circular shifts :

for each line in the input d o
begin
generate and save all inter -

esting shifts of ' thi s

line '
en d

etc .

The construction of the program proceeds by smal l

steps' in this way until ultimately each operation

is expressed in the available primitive operations
of the target language . We shall not carry out th e

details since the objective of this paper is not to
be a tutorial on this methodology . However, not e
that the methodology achieves the goals set out fo r

it . Since the context is small at each step it i s
relatively easy to understand what is going on ; in-

deed, it is easy to prove that the program will
work correctly if the primitives from which it i s
constructed are correct . Moreover, proving th e

correctness of the primitives used at step z is a

small set of proofs (of the same kind) at step L+l .

(In the terminology of this methodology, step p i s

an abstraction from its implementation in ste p

L+1 .)

Now, the constructive programming methodolog y

relates to eliminating the goto in the followin g

way . It is crucial to the constructive philosoph y
that it should be possible to define the behavior

of each primitive action at the ath step indepen-

dent of the context in which it occurs . If thi s
were not so, it would not be possible to prove the
correctness of these primitives at the b+lst ste p

without reference to their context in the Lath step .

In particular, this suggests (using flow char t

terminology) that it should be possible to repre-
sent each primitive at the Lth step by a (sub) flow

chart with a single entry and a single exit path .
Since this must be true at each step of th e

*A more complete explication of the methodolog y

would concern itself with the nature and order of

the decisions made at each step as well as the

fact that they are small . See (22) for an analysi s

of two alternative decompositions of a KWIC system
similar to the one defined here .

6 4



construction, the final flow chart of a progra m

constructed in this way must consist of a set o f

totally nested (sub) flow charts . Such a flow

chart can be constructed without an explicit got o

if conditional and looping constructs are avail -

able .
Consider, now, programs which can be buil t

from only simple conditional and loop constructs .
To do this we will use a flow chart representatio n

because of the explicit way in which it manifest s
control . We assume two basic flow chart elements ,
a "process " box and a "binary decision" box :

These boxes are connected by directed line seg-

ments in the usual way, We are interested in tw o

special "goto-less" constructions fabricated from

these primitives : a simple loop and an n-way con-
ditional, or " case", construct . We consider thes e

forms "goto-les s " since they contain single entr y
and exit points and hence might reasonable be pro -

vided in a language by explicit syntactic con-
structs . (The loop considered here obviously doe s

not correspond to all variants of initialization ,
test before or after the loop body, etc . Thes e
variants would not change the arguments to follow

and have been omitted . )

simple loop

	

case

Consider the following three transformations (Tl ,

T2, T3) defined on arbitrary flow charts :

T1. any linear sequence of process boxes may b e

mapped into a single process bo x

T2. any simple loop may be mapped into a proces s
box

T3. any n -way "case" construct may be snapped int o
a process box

Any graph (flow chart) which may be derive d

by a sequence of these transformations we shal l
call a "reduced" fort of the original . We shall

say that a graph which may be reduced to a singl e
node by some sequence of transformations is " goto -
less" (independent of whether actual goto_ state-
ments are used in its encoding) and that the se-
quence of transformations defines a set of nested

"control environments" . The sequence of trans -
formations applied in order to reduce a graph to a
single node may be used as a guide to both under -
standing and proving the correctness of the pro -
gram (2,4,6,7,19) .

The property of being "goto-les s " in the sens e
defined above is a necessary condition for the pro -
gram to have been designed by the constructiv e
methodology, Moreover, the property depends onl y
upon the topology of the program and not on th e
primitives from which it is synthesized ; in par-
ticular, a goto statement might have been used .
However, not only can such programs be constricte d

without a goto if conditionals and loops are avail -

able, but any use of a goto which is not equivalen t
to one of these will destroy the requisite topology .
Hence any set of restrictions (on the use of th e

goto) which is intended to achieve this topology i s
equivalent to eliminating the oto .

THE THEORETICALPOSSIBILITY	 OF ELDIINATING THE GOTO

It is possible to express the evaluation of an
arbitrary computable function in a notation which
does not have an explicit goto . This is not par-
ticularly surprising since :

	

(1) several forma l
systems of computability theory, e .g ., recursive

functions, do not use the concept ; (2) (pure) LIS P
does not use it ; and (3) Van Wijgaarden (13), i n

defining the semantics of Algol, eliminated label s

	-i

65



and goto's by systematic substitution of proce-

dures . However., this does not say that an algor-
ithm for the evaluation of these functions i s
especially convenient or transparent in goto-les s
form . Alan Perlis has referred to similar situa-
tions as the ' Turing Tarpit ' in which everything
is possible, but nothing is easy ,

Knuth and Floyd (14) and Ashcroft and Manna

(15) have shown that given an arbitrary flow char t
it is not possible to construct another flow char t
(using the same primitives and no additional vari -
ables) which performs the same algorithm and use s
only simple conditional and loop constructs ; of

course other algorithms exist that compute th e
same function and which can be expressed with onl y
simple conditionals and loops . The example give n
in Ashcroft and Manna of an algorithm which canno t
be written in goto-less form without adding addi-
tional variables is :

By enclosing some of the regions of the flow
chart in dotted lines and labeling them (B1 an d
B2) as shown above, and further abstracting from
the details of the process and decision struc-
ture, the abstract structure of this example is :

~TAR~

The reader is referred to (15) for a proof tha t
such programs cannot be constructed from simpl e
looping and conditional constructs unless an addi-
tional variable is added . Intuitively, however ,
it should be clear from the abstraction of the ex -
ample that neither B1 nor B2 is inherently neste d
within the other . Moreover, the existence of mul-
tiple exit paths from B1 and B2 make it impossibl e
to impose a superior (simple) loop (which inherent -
ly has a single exit path) to control the itera-
tion between them unless some mechanism for pat h
selection (e.g ., an additional variable) is intro-
duced .

In (21) Bohm and Jacopini show that an arbi-
trary flow chart program may be translated into a n
equivalent one with a single "while statement" b y
introducing new boolean variables, predicates t o
test them, and assignment statements to set them .
A variant of this scheme involving the addition o f

a single integer variable, call it

	

which
serves as a ' program counter ' is given below .

Suppose some flow chart program contains a

set of process boxes assigned arbitrary intege r
labels

	

and decision boxes assigne d
arbitrary integer labels i + ,inf2, . . .,inr .

	

(By
convention assume the TO box is assigned th e
label zero, and the entry box is assigned the labe l
one .) For each process box, i,, create a new box ,

i',, identical to the former exJept for the addi-
thn of the assignment 'a - i' where i is th e

label of the successor of i, in the original pro -
gram . For each decision bo, i 2, create the macr o
box, i'v

i f

where i
t
and if are the labels of the successor s

of the true and false branches of the decision box ,
i, in the original program . Now create the fol-
lowing flow chart :

66



Thus, for example, the Ashcroft and Manna example

	

Constructions such as the one given above ar e
given earlier (the labels are given on the earlier

	

undesirable not only because of their inefficiency ,
diagram) becomes :

		

but because they destroy the topology (loop struc -
ture) and locality of the original program an d
thus make it extremely difficult to understand .

cf
1	 1

	

Nevertheless, the construction serves to illustrat e
the point that adding (at least one) control vari-

able is an effective device for eliminating th e
goto . Ashcroft and Manna have given algorithms fo r

STOP cF0 translating arbitrary programs into goto-less form
(with additional variables) which preserve the ef-
ficiency and topology of the original program .

THE PRACTICALPOSSIBILITYOF ELIMINATING THEGOTO

As discussed in the previous section, it i s
theoretically possible to eliminate the goto . N ore -
over, there can be little quarrel with the objec-
tives of the constructive programming methodology .
A consequence of the particular methodology pre-
sented above is that it produces goto-less pro -
grams, thus the goto is unnecessary in program s
produced according to this methodology . A key ,
perhaps the key, issue, then, is whether it i s
practical to remove the poto . In particular there
is an appropriate suspicion among practicing pro-
grammers that coding without the poto is both in -
convenient and inefficient . In this section we
shall investigate these two issues, for, if it i s
inconvenient or grossly inefficient to program
without the goto then the practicality of the meth-

odology is in question .

Convenience :

Programming without the Loto is not (neces-
sarily) inconvenient . The author is one of th e
designers, implementors, and users of a 'system s
implementation language', Bliss (16,17,18) ; Blis s

does not have goto . The language has been in ac-
tive use for three years ; we have thus gained con-
siderable practical experience programming withou t

the aoto . This experience spans many people an d
includes several compilers, a conversational pro-

gramming system (APL), an operating system, as wel l
as numerous applications programs .

The inescapable conclusion from the Bliss ex-
perience is that the purported inconvenience o f
programming without a goto is a myth : Programmers
familiar with languages in which the goto is pre -
sent go through a rather brief and p ainless adapta-
tion period . Once passed this adaptation perio d

they find that the lack of a goto is not a handi-
cap ; on the contrary, the invariant reaction i s
that the enforced discipline of programming withou t
a goto structures and simplifies the task .

Bliss is not, however, a simple goto-les s
language ; that is, it contains more than simpl e

while-do and if-then-else (or case) constructs .
There are natural forms of control flow that occu r

in real programs which, if not explicitly provide d
for in the language, either require a g~oto so tha t

the programmer may synthesize them, or else wil l
cause the programmer to contort himself to mol d
them into a goto-less form (e .g ., in terms of th e
construction in the previous section) . Contortio n
obscures and is therefore antipathetic with th e

*Including this author when he first read Dijkstra' a
letter in 1968 .

cF4

	

Y	 ,h ; c/- 0

a°2

	

q ?

°3

	

H ; ag - 1
Y	 	 _

N

N

N

H ;	 06

	

1-	

N

Cf7

N

P?

-10

	

'

G ; ae-
6	 j

G ;

	

}

N

G; a<-1

67



constructive philosophy ; hence the approach in

Bliss has been to provide explicit forms of these
natural constructs which are also inherently well -

structured . In (19) the author analyzes the form s
of control flow which are not easily realized in a

simple goto-less language and uses this analysis t o
motivate the facilities in Bliss . Here we shal l

merely list some of the results of that analysis a s

they manifest themselves in Bliss (and might mani-
fest themselves in any goto-less language) :

1 . A collection of ' conventional ' contro l

structures : Many of the inconvenience s
of a simple goto-less language are elim-
inated by simply providing a fairly larg e

collection of more-or-less 'conventional '

control structures . In particular, for

example, Bliss includes : control 'scopes '

(blocks and compounds), conditionals (bot h
if-then-else and case forms), severa l

looping constructs (including while-do ,
do-while_, and stepping forms), potentiall y

recursive procedures, and co-routines .

2, Expression Language : As noted in an ear-
lier section, one mechanism for expressin g
algorithms in goto-less form is throug h

the introduction of at least one addition -

al variable . The value of this variabl e
serves to encode the state of the computa-
tion and direct subsequent flow . This is

a common programming practice used eve n
in languages in which the Eoto is presen t

(e .g., the FORTRAN ' computed goto ' ) . Blis s
is an ' expression language' in the sens e

that every construct, including those whic h
manifest control, is an expression and com-

putes a value . The value of an expressio n
(e .g ., a block or loop) forms a natura l
and convenient implicit state variable .

3 . Escape Mechanism : Analysis of real pro -

grams strongly suggests that one of th e
most common ' good ' uses of a goto is t o
prematurely terminate execution of a con-

trol environment--for example, to exi t
from the middle of a loop before th e
usual termination condition is satisfied . ,,

To accommodate this form of control Blis s
allows any expression (control environ-
ment) to be labeled ; an expression of th e

form "leave <label> with <expression>"
may be executed within the scope of thi s

labeled environment . When a leave ex-
pression is executed two things happen :
(1) control immediately passes to the en d

of the control environment (expression )
named in the leave, and (2) the value o f

the named environment is set to that o f

the <expression> following the with . Note
that the leave expression is a restricte d

form of forward branch just as the vari-
ous forms of loop constructs are restrict-
ed backward jumps . In both cases the con-

structs are less general, and less danger-
ous, than the general goto .

A somewhat different form of the Bliss escape i s
described in (19) ; the form described in (19) ha s

been replaced by that described above .

In summary, then, our experience with Blis s

supports the notion that programming without th e

goto is no less convenient than with it . Thi s
conclusion rests heavily on the assumption that th e
goto was not merely removed from some existing lan-
guage, but that a coherent selection of well-struc-
tured constructs were assembled as the basis of th e
control component of the new language . It would b e
unreasonable to expect that merely removing th e

goto from an existing language, say FORTRAN or Ph/I ,
would result in a convenient notation . On the
other hand, it is not unreasonable to expect that a

relatively small set of additions to an existin g
language, especially the better structured one s
such as Algol or PL/I, could reintroduce the requi-

site convenience . While not a unique set of solu-
tions, the control mechanisms in Bliss are one

model on which such a set of additions might b e
based ,

Efficiency :

More computing sins are committed in the nam e
of efficiency (without necessarily achieving it )

than for any other single reason--including blind

stupidity . One of these sins is the construction
of a "rat's nest" of control flow which exploits a

few common instruction sequences . This is precise-
ly the form of programming which must be eliminat-
ed if we are ever to build correct, understandable ,
and modifiable systems .

There are applications (e .g ., ' real time ' pro-
cessing) and there are (a few) portions of every

program where efficiency is crucial . This is a

real issue . However, the appropriate mechanism

for achieving this efficiency is a highly optimiz-
ing compiler, not incomprehensible source code .
In this context it is worth noting another benefi t
of removing the p~ot:o--a benefit which the autho r
did not fully appreciate until the Bliss compiler

was designed---namely, that of global optimization .
The presence of goto in a block-structured lan-

guage with dynamic storage allocation forces run -

time overhead for jumping out of blocks and pro-
cedures and may imply a distributed overhead t o

support the possibility of usch jumps . Eliminating
the goto removes both of these forms of overhead .

More important, however, is that :

	

(1) the scope o f
a control environment is statically defined, and

(2) all control appears as one of a small set o f
explicit control constructs . A consequence of (1 )

is that the Fortran-H compiler (20), for example ,

expends a considerable amount of effort in order t o
achieve roughly the same picture of overall contro l

as that implicit in the text of a Bliss program ,
The consequence of (2) is that the compiler nee d

only deal with a small number of well defined con-
trol forms ; thus failure to optimize a peculiarly
constructed variant of a common control structur e

is impossible . Since flow analysis is pre-requi-
site to global optimization, this benefit of elim-

inating the goto must not be underestimated .

SUMMARY

One goal of our profession must be to produc e
large programs of predictable reliability . To do
this requires a methodology of program construction .

Whatever the precise shape of this methodology ,
whether the one sketched earlier or not, one prop-

erty of that methodology must be to isolate (sub )

68



components of a program in such a way that th e

proof of the correctness of an abstraction fro m

these components can be made independent of bot h

their implementation and the context in which the y
occur . In particular this implies that unrestrict-

ed branching between components cannot be allowed .

Whether or not a language contains a goto and
whether or not a programmer uses a goto in som e

context is related, in part, to the variety an d
extent of the other control features of the lan-

guage . If the language fails to provide importan t
control constructs, then the goto is a crutch fro m

which the programmer may synthesize them . The

danger in the goto is that the programmer may d o
this in obscure ways, The advantage in eliminat-

ing the Ito is that these same control structure s
will appear in regular and well-defined ways . I n

the latter case, both the human and the compile r
will do a better job of interpreting them .

REFERENCE S

1. Dijkstra, E . W ., "Coto Statement Considere d

Harmful", Letter to the Editor, CAC;I, 11, 3 ,

March 1968 .

2. Dijkstra, E . W ., "A constructive approach t o

the problem of program correctness", BIT 8 ,
1968 .

3. Dijkstra, E . W ., "Structured programming" ,

Software Engineering, October 1969, Rome .

4. Dijkstra, E . W ., "Notes on Structured Pro-
gramming", August 1969 .

5. Naur, P ., "Proof of algorithms by genera l
snapshots", BIT 6, 1966 .

6. Naur, P ., "Programming by action clusters" ,
BIT 9, 1969 .

7. Hoare, C . A . R., "Proof of a program FIND" ,
CACM 14, 1, June 1971 .

8. Wirth, N ., "Program development by stepwis e
refinement", CACM, April 1971 .

9. Parnas, D . L ., "Information distributio n

aspects of design methodology", IFIP, 1971 ,

10. King, J ., A Program Verifier, Ph .D . Thesis ,

Carnegie-Mellon University, 1969 .

11. Manna, Z ., Termination of Algorithms, Ph .D .
Thesis, Carnegie-Mellon University, Apri l

1968 .

12. Manna, Z ., "The correctness problem of com-
puter programs", Computer Science Research

Review, 1968 .

13. Van Wijngaarden, A ., "Recursive Definition o f

Syntax and Semantics " , in Formal Language	 De -
scription Languages, (T. B . Steel, ed .) ,
North-Holland Publishing Col, Amsterdam, 1966 .

14. Knuth, Floyd, Notes on Avoiding ' GOTO ' State-

ments, Technical Report CS 148, Stanford Uni-
versity, January 1970,

15. Ashcroft, E. and Manna, Z ., "The translation o f
"goto" programs into "while" programs, IFIP ,
1971 .

16. Wulf, et al ., Bliss Reference Manual, Compute r

Science Department Report, Carnegie-Mello n
University .

17. Wulf, at al ., "Bliss : a language for system s
programming", CACM, December 1971 ,

18. Wulf, at al ., "Reflections on a systems pro-

gramming language", proceedings of theSI.GPLAN
Symposium on Systems ImplementationLangues ,
October 1971 ,

19. Wulf, W . A ., "Programming without the goto" ,

IFIP, 1971 .

20. Lowery and Medlock, "Object code optimization" ,
CACM, 12, 1, January 1969 .

21. Bohm and Jacopini, "Flow diagrams, Turing

machines, and languages with only two forma-
tion rules", CACM, 9, 5, May 1966 .

22. Parnas, D,, On the Criteria to be Used in De -
composing Systems into Modules, Computer Sci-
ence Department Report, Carnegie-Mellon Uni-
versity, 1971 .

23. Manna, Z ., Ness, S ., and Vaillemin, J ., " Induc-
tive methods for proving properties of pro -
grams", SIGPLAN/SIGACT Conference on Proving
Assertions about Programs, January 1972 .

24. Burstall, R., "An algebraic description o f
programs with assertions, verification and

simulation", SIGPLAN/SIGACT Conference on
Provin Assertions about Programs, J_anuar1
1972 .

69


