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Abstract 

To be effective, an agent that collaborates with humans 
needs to be able to learn new tasks from humans they work 

with. This paper describes a system that learns executable 

task models from a single collaborative learning session 
consisting of demonstration, explanation and dialogue. To 

accomplish this, the system integrates a range of AI tech-

nologies: deep natural language understanding, knowledge 
representation and reasoning, dialogue systems, plan-

ning/agent-based systems and machine learning. A formal 

evaluation shows the approach has great promise.  

Introduction   

To further human-machine interaction, there is a great need 
to develop collaborative agents that can act autonomously 
yet still collaborate with their human teammates. In this 
paper we present PLOW, an intelligent automated software 
assistant that helps people manage their everyday tasks; 
our focus will be on how such agents can acquire the task 
models they need from intuitive language-rich demonstra-
tions by humans. PLOW uses the same collaborative archi-
tecture to learn tasks as it does to perform tasks. The sys-
tem displays an integrated intelligence that results from 
sophisticated natural language understanding, reasoning, 
learning, and acting capabilities unified within a collabora-
tive agent architecture. In this paper, we report on recent 
work on how this agent combines its capabilities to learn 
new tasks. A recent evaluation shows great promise: our 
system can quickly learn new tasks from human subjects 
using modest amounts of interaction. 

Background 

In previous work, researchers have attempted to learn new 
tasks by observation, creating agents that learn through 
observing an expert’s demonstration (Angros et al. 2002, 
Lau & Weld 1999; Lent & Laird 2001). These techniques 
require observing multiple examples of the same task, and 
the number of training examples required increases dra-
matically with the complexity of the task. To be effective, 
however, collaborative assistants need to be able to acquire 
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tasks much more quickly – typically from a single exam-
ple, possibly with some clarification dialogue. To enable 
this, in our system the teacher not only demonstrates the 
task, but also gives a “play-by-play” description of what 
they are doing. This is a natural method that people already 
use when teaching other people, and our system exploits 
this natural capability. By combining the information from 
understanding with prior knowledge and a concrete exam-
ple demonstrated by the user, our system can learn com-
plex tasks involving iterative loops in a single short train-
ing session. 

Task Learning Challenges 

As in all learning, a core challenge in task learning is iden-
tifying the appropriate generalizations, which are key to 
allow the learned task model to be successfully applied to 
new arguments in new contexts.  When viewing this as a 
traditional learning-by-observation problem using traces of 
executions, an additional challenge involves identifying 
parts of the task models that are not explicit in the ob-
served actions. For instance, if a user executes a condi-
tional step equivalent to the form, “if A then B else C”, 
then the trace will only contain one action, B or C, depend-
ing on whether the “hidden” condition A is true. Even if 
we have multiple training examples we still only observe 
that either B or C is performed. Identifying that A is the 
relevant condition from the context is an exceptionally 
hard problem that requires considering the entire context of 
the demonstration as training data.   

In our approach, we identify the condition A from one 
example because the demonstrator often mentions the con-

dition in the play-by-play commentary. When viewed from 
the perspective of human learning and/or integrated agents, 
this is a completely natural and ordinary example. Our 
agent fuses the information from the language understand-
ing with the observed demonstration to construct these 
complex task models. 

There are many other aspects of tasks that are difficult to 
learn but become much easier with a play-by-play. Some 
of the key ones include: 
• Identifying the correct parameterization: is a value in 

the training an example of a parameter value or a con-
stant? What is the relation between the values used in 
the training? What is the input or the output? 



• Identifying the boundaries of iterative loops: is an ob-
served action the start of a loop, a normal step, or the 
end of a loop? 

• Loop termination conditions: what is the condition that 
caused the termination of the loop? 

• Hierarchical structure: what subtasks were performed 
in the demonstration? 

• Task goals: what is the end goal of the task? 

In all these cases, the user frequently provides exactly the 
information that is needed in their running play-by-play. 
By combining language understanding and learning from 
examples, PLOW can identify intended procedures from 
just a single demonstration. 

To give an idea of what tasks we are trying to learn, Figure 
1 shows ten questions that were used in the system evalua-
tion. The tasks were designed by an outside group and un-
known to the developers prior to the test. We will discuss 
how well the system did later in the paper. 

The PLOW System 

While language greatly enhances the training, this is not to 
say that task learning becomes easy to accomplish. To cre-
ate an effective learning system, we need to integrate deep 
language understanding, reasoning, dialogue and machine 
learning, integrated within a collaborative agent architec-
ture. This section gives a brief overview of the system. 

The Interface 

PLOW learns tasks that can be performed within a web 
browser. These are typically information management 
tasks, e.g., finding appropriate sources, retrieving informa-
tion, filing requisitions, booking flights, and purchasing 
things. Figure 2 shows PLOW’s user interface. The main 
window on the left shows the Mozilla browser, instru-
mented so that PLOW can monitor user actions.  On the 
right is the procedure that PLOW has learned so far, sum-
marized back in language from the task model using the 
system’s language generation capabilities. Across the bot-
tom is a chat window that shows the most recent interac-

tions. The user can switch between speech and keyboard 
throughout the interaction. 

The Agent Architecture 

A high-level view of the PLOW agent architecture is 
shown in Figure 3. The understanding components com-
bine natural language (speech or keyboard) with the ob-
served user actions on the GUI. After full parsing, seman-
tic interpretation and discourse interpretation produce plau-
sible intended actions. These are passed to the collabora-
tive problem solving (CPS) agent, which settles on the 
most likely intended interpretation given the current prob-
lem solving context. Depending on the actions, the CPS 
agent then drives other parts of the system. For example, if 
the recognized user action is to demonstrate the next step 
in the task, the CPS agent invokes task learning, which if 
successful will update the task models in the knowledge 
base. If, on the other hand, the recognized user intent is to 
request the execution of a (sub)task, the CPS agent at-
tempts to look up a task that can accomplish this action in 
the knowledge base. It then invokes the execution system 
to perform the task. During collaborative learning, the sys-
tem may actually do both – it may learn a new step in the 
task being learned, but because it already knows how to do 
the subtask, it also performs that subtask for the user. This 
type of collaborative execution while learning is critical in 
enabling the learning of iterative steps without requiring 
the user to tediously demonstrate each loop through the 
iteration. 

Language Processing 

Language understanding and dialogue management is ac-
complished using the TRIPS system (for details, see Allen 
et al. 2001, Ferguson & Allen 1998), which provides the 
architecture and domain-independent capabilities for sup-
porting dialogue-based, mixed-initiative problem solving 
in a range of different applications and domains.  Its cen-

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Previously unseen tasks used in the evaluation 

 

Figure 2: The PLOW Interface 

1. What <businesses> are within <distance> of <address>? 

2. Get directions for <integer> number of restaurants 

within <distance> of <address>. 

3. Find articles related to <topic> written for <project>. 

4. Which <project> had the greatest travel expenses be-

tween <start date> and <end date>? 

5. What is the most expensive purchase approved between 

<start date> and <end date>? 

6. For what reason did <person> travel for <project> be-

tween <start date> and <end date>? 

7. Find <ground-transport, parking> information for <air-

port>. 

8. Who should have been notified that <person> was out of 

the office between <start date> and <end date>? 

9. Summarize all travel and purchase costs for <project> 

between <date> and <date> by expense category  

10. Which projects exceeded the current government maxi-

mum allowable expense for travel costs? 



tral components are based on a domain-independent repre-
sentation, including a linguistically based semantic form 
(the Logical Form, or LF), illocutionary acts, and a col-
laborative problem-solving model.  Domain independence 
is critical for portability between domains: the system can 
be tailored to individual domains through an ontology 
mapping between the domain-independent representations 
and the domain-specific representations (Dzikovska et al. 
2003). 
The parser uses a broad coverage, domain-independent 
lexicon and grammar to produce the LF, a detailed descrip-
tion of the semantic content of the input. The LF is a flat, 
unscoped representation that supports robust parsing and 
interpretation. It consists of a set of terms that describe the 
objects and relationships evoked by an utterance. The LF 
includes surface speech act analysis, dependency informa-
tion, and word senses (semantic types) with semantic roles 
derived from a domain-independent language ontology. 
The parser disambiguates word senses based on linguisti-
cally motivated selectional restrictions encoded in the se-
mantic types and roles. Word senses that have domain-
specific mappings are tried first by the parser to improve 
parsing speed and accuracy. 

The TRIPS system has been described in detail previ-
ously, so we will not go into more detail here. Also not 
discussed are the speech recognition issues, where we use 
dynamically changing language models that continuously 
add new words found in the context (details forthcoming), 
and our generation capability, which combines symbolic 
and statistical models to produce real-time broad coverage 
generation (Chambers 2005). This paper focuses on how 
deep understanding of language is used for task learning, 
rather than how language processing is accomplished. 

Instrumentation 

To enable effective learning from demonstration, getting 
the right level of analysis for the instrumentation is critical. 
It is relatively easy, for instance, to obtain a trace of the 
mouse movements and gestures that a user performed, but 
this does not help to understand the significance of what 
action is being performed, nor can it be used to execute the 
task later in a different context. Similarly, tracing the back-
end API calls of the GUI identifies what the user did, but 
not how they did it. This makes it impossible to identify 
the critical decision-making processes needed to handle 
new examples.  

Our instrumentation takes the middle ground. We inter-
pret user actions in terms of the underlying DOM represen-
tation that the browser uses to generate the GUI contents of 
the window (e.g., clicking buttons, filling in fields, select-
ing objects on screen) and we record key events that occur 
in response (e.g., new page loaded). If the web consisted of 
pages derived from well designed basic HTML sources, 
this would be fairly straightforward. But life is not like 
that. Significant effort is needed to handle the range of 
phenomena found in real-life web pages. 

Learning Tasks  

This section considers a series of challenges in task learn-
ing and shows how PLOW addresses these issues using a 
combination of language understanding, intention recogni-
tion, reasoning and machine learning. The problems can be 
divided into learning perception/actuation actions (i.e., 
“primitive” or “non-decomposable” actions), and learning 
the higher-level control structures, including identifying 
hierarchical structure, control structures, and parameteriza-
tion. 

Learning Primitive Actions 

Consider a situation in which the user is teaching PLOW 
how to fill in a search form at a bookseller’s site (perhaps 
as part of a book-buying task); the user says, “Put the name 

here” and then fills in the author’s name in the form field 
as shown in Figure 4 (left-hand side). The results from the 
language understanding and GUI instrumentation are also 
shown. 
 PLOW now must combine the information about what 
the user said and the action they performed in order to 
learn a useful generalization. It starts a heuristic search 
through the DOM representation starting from the clicked 
node, looking for labels and tags that might be related to 
the semantic concept *FULLNAME, produced by the 
parser. In this case, it finds a text node with the content 
“Author’s name” in a nearby subtree (the search space is 
marked with a dotted line in the figure). Using the lexicon 
and ontology, it can easily determine that “name”  is rele-
vant to the concept *FULLNAME. In other cases, it might 
find a label “author” or some other semantically related 
concept and identify that. The heuristic search combines a 
structural distance metric (applied to the path from the se-
lected node to the candidate node) and a semantic metric 
(the semantic similarity of the label to the concepts in the 
utterance) and returns the best match. If no reasonable 
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match is found, it resorts to using just structural properties 
of the DOM tree. 

PLOW uses the best match to synthesize a retrieval rule 
for future use in finding the text field. It attempts to pro-
duce a rule that generalizes away from the specific onto-
logical concept *FULLNAME and could apply to any con-
cept (a natural language gloss of the rule is shown on the 
right hand side of Figure 4).  

After learning this rule based on a single example, 
PLOW can not only perform the action “find the author 
field” on this site, but actually can find other text fields on 
the site (for example, the book title field). In an evaluation 
of this technique, we determined that after learning how to 
find the “books” tab, it successfully found other tabs 95% 
of the time on Barnes & Noble’s website, and 98% on 
Amazon (for details and other examples, see Chambers et 
al, 2006). 

Learning Effective Parameterization 

One of the main challenges to learning even simple 
straight-line procedures is identifying the appropriate pa-
rameterization. When an object is used in a demonstration, 
the system has to be able to determine whether it is simply 
being used as an example and as an input parameter, 
whether it should be a constant in the procedure, or 
whether is has some relational dependency to other pa-
rameters already in the procedure. In addition, PLOW must 
determine which parameters are needed as the output pa-
rameters of the procedure.  

With traditional techniques for learning from observa-
tion, it is impossible to identify such information reliably 
from one example. With additional information from lan-
guage, however, we can generalize from one example quite 
effectively. Figure 5 shows excerpts from an actual dia-
logue for finding hotels near an address and the key fea-
tures PLOW used to derive its interpretation. First, much 
information can be obtained from language through the 
definiteness feature. An indefinite noun phrase such as “an 

address” is very likely to be an input parameter, and a defi-
nite noun phrase is not. In general, definite noun phrases 
are resolved using TRIPS’ reference resolution capability, 

capability, connecting the same instances of the parameters 
as they are used in the task. In the case of “the zip code”, 
the reference resolution component handles the bridging 
reference using ontological information to interpret this as 
the zip code of the previously mentioned address.  

Learning Hierarchical Structure 

For the challenge of identifying the appropriate task hierar-
chy, the PLOW system uses a simple strategy for identify-
ing the beginning of new subprocedures: Any statement 
that explicitly identifies a goal, e.g., “Now let me show you 

how to …” or “Now we need to find the zip code”, is 
treated as the beginning of a new procedure to accomplish 
the mentioned goal. In order to work effectively, however, 
the user needs to explicitly indicate when the subprocedure 
is completed (e.g., “We’re done here” or “We’re done find-

ing the zip code”). This requirement may not be completely 
natural, but we have found anecdotally that it is easy to 
pick up and remains intuitive. 

Learning Iteration 

Learning iterative procedures in one shot is a significant 
challenge for several reasons, including the fact that users 

 

Figure 4: Learning to find and fill a text field 

 

Utterance Interpretation Key Features 

hotels -> Out-

put Parameter 

(list of hotels) 

- Bare plural 

- Object of information-

producing action “find” 

Let me 

show you 

how to find 

hotels near 

an address 
an address -> 

input parameter 

of type address 

- Indefinite 

- No deictic action 

Put hotels 

here 

hotels -> con-

stant 

- Bare plural 

- Identical to the text 

typed in the user action 

Put the zip 

code here 

the zip code -> 

function on 

address pa-

rameter 

- Definite reference 

- Ontology (zip code is 

role of address) 

Figure 5: Interpreting Noun Phrases 



typically do not want to demonstrate lengthy iterations. 
Unfortunately, task learning algorithms based on pure 
demonstration require many examples in order to induce 
the intended control structure. Again, language comes to 
the rescue, but we found this was not enough. To create a 
useful user experience, we needed to make the learning 
system much more active, using dialog to obtain additional 
information when needed.  

When learning iterations, PLOW takes the initiative to 
help the user execute the task being demonstrated. For in-
stance, after the user identifies the initial step of an itera-
tion over a list, PLOW attempts to repeat the step over the 
rest of the items in the list. This provides a natural oppor-
tunity for the user to immediately correct problems that 
arise from generalizing from a single training example. 
Figure 6 shows an example. The user is teaching PLOW 
how to find hotels near an address. The user starts by high-
lighting a list of results (Figure 6a) and saying “here is a 

list of results.” From the fact that the user identified a list, 
PLOW posits that the user is defining an iteration over the 
items in the list. It invokes its ability to parse the DOM tree 
and identify the individual elements, presenting the parsed 
results to the user (Figure 6b). The user can now operate on 
individual elements. In the example, the user highlights the 
title of the hotel and says, “This is the hotel name” (Figure 
6c). Given this, PLOW then learns the extraction pattern 
and applies the rule to all the other elements, showing the 
results in a new column (Figure 6d). The user can browse 
through the results; if they find an error (typically that no 
information was extracted for an element), the user can 
signal an error (e.g., say “this is wrong”) and then provide 
another example. PLOW then learns an extraction rule 
from these two examples. This process can continue, with 
the user providing more examples until a comprehensive 
pattern is learned. 

In addition, the user can teach the system how to iterate 
over pages of information by identifying the element for 
the next page (e.g., “Click the next button for more results” 
– see Figure 6e). In this case, PLOW does not know the 
duration of the iteration and will ask the user how many 
results they wish to find. The system understands a range 
of responses including “get two pages,” “twenty items” and 
“until the distance is greater than 2 miles.” The latter 
makes sense only if the user has taught the system how to 
extract the distance from the elements in the iteration, and 
it is supported by the system’s ability to interpret extracted 
information (e.g., the text “2.56 miles”) on the fly. 

Using this mixed-initiative form of learning, we have 
found users can easily define simple iterations in a way 
that is fairly intuitive and easy to use. 

Evaluation 

While we have shown examples of how integrating lan-
guage, dialogue, reasoning and learning has great potential 
for effective one-shot task learning, the real test is whether 
ordinary users can quickly learn to use the system to teach 
new procedures. There are many issues to be concerned 
about: (1) Do we have comprehensive enough natural lan-
guage understanding capabilities so that users expressing 
information in intuitive ways are likely to be understood? 
(2) Can the system really learn robust task models from a 
single example? (3) Can the users easily determine whether 
the system is learning correctly as they are teaching the 
system? Significant engineering went into the PLOW 2006 
system to address these issues. 

In August 2006, we delivered a version of the PLOW 
system to independently contracted evaluators. At that 
point, we had developed the system to ensure that we (the 
developers) could effectively teach PLOW to learn how to 
answer seventeen pre-determined test question templates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Learning Iterative Steps 

 



The evaluators recruited 16 test subjects, who received 
general training on how to use PLOW and many other ap-
plications that were part of the overall project evaluation. 
Among these were three other task learning systems: one 
learned entirely from passive observation; one used a so-
phisticated GUI primarily designed for editing procedures 
but extended to allow the definition of new procedures; 
and the third used an NL-like query and specification lan-
guage that required users to have a detailed knowledge of 
HTML producing the web pages. 

After training, the subjects then performed the first part 
of the test, in which they had to use different systems to 
teach some subset of the predefined test questions. Seven 
of these involved the PLOW system. Once the procedures 
were learned by the systems, the evaluators created a set of 
new test examples by specifying values for the input pa-
rameters to the task and then scored the results from exe-
cuting the learned task models using predetermined scoring 
metrics individualized to each question. The PLOW system 
did well on this test, scoring 2.82 out of 4 across all test 
questions and the 16 subjects. 

The second part of the test involved a set of 10 new 
“surprise” test questions not previously seen by any of the 
developers (see Figure 1). Some of these were close vari-
ants of the original test questions, and some were entirely 
new tasks. The sixteen subjects had one work day to teach 
whichever of these surprise tasks they wished, using 
whichever of the task learning systems they wished. As a 
result, this test reveals not only the core capability for 
learning new tasks, but also evaluates the usability of the 
four task learning systems.  

PLOW did very well on this test on all measures. Out of 
the 16 users, thirteen of them used PLOW to teach at least 
one question. Of the other systems, the next most used 
system was used by eight users. If we look at the total 
number of tasks successfully taught, we see that PLOW 
was used to teach 30 out of the 55 task models that were 
constructed during the day (see Figure 7). Furthermore, the 
tasks constructed using PLOW received the highest aver-
age score in the testing (2.2 out of 4).  

Concluding Remarks 

By integrating natural language understanding, reasoning, 
learning, and acting capabilities, it is possible to develop 
systems that can learn complex task models in one short 
session with a teacher, using an intuitive language-based 
interface that requires relatively little training to use. While 
the PLOW system was preferred over the alternatives in 
the test, this does not mean, however, that the subjects 
found any of the current systems easy to use. Sixteen sub-
jects put in a full work day to teach only 55 task models 
(just over 3 tasks per subject). Because of robustness issues 
in the software, and difficulties in being able to effectively 
confirm understanding as the tasks were being taught, the 
users had to persevere to construct good task models. 
Much of this, we believe, will be fixed by better engineer-
ing, improvements in the learning algorithms, and better 

mechanisms for displaying the information that PLOW has 
learned  throughout the interaction. 
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Figure 7: Systems Selected in Teaching Surprise Tasks 


