
PLOW: A Collaborative Task Learning Agent

James Allen, Nathanael Chambers†, George Ferguson‡, Lucian Galescu, Hyuckchul Jung, Mary

Swift‡, William Taysom

Institute for Human and Machine Cognition, 40 S Alcaniz St, Pensacola, FL
†
Dept. of Computer Science, Stanford University, Stanford, CA

‡
Dept. of Computer Science, University of Rochester, Rochester, NY

jallen@ihmc.us

Abstract

To be effective, an agent that collaborates with humans
needs to be able to learn new tasks from humans they work

with. This paper describes a system that learns executable

task models from a single collaborative learning session
consisting of demonstration, explanation and dialogue. To

accomplish this, the system integrates a range of AI tech-

nologies: deep natural language understanding, knowledge
representation and reasoning, dialogue systems, plan-

ning/agent-based systems and machine learning. A formal

evaluation shows the approach has great promise.

Introduction

To further human-machine interaction, there is a great need
to develop collaborative agents that can act autonomously
yet still collaborate with their human teammates. In this
paper we present PLOW, an intelligent automated software
assistant that helps people manage their everyday tasks;
our focus will be on how such agents can acquire the task
models they need from intuitive language-rich demonstra-
tions by humans. PLOW uses the same collaborative archi-
tecture to learn tasks as it does to perform tasks. The sys-
tem displays an integrated intelligence that results from
sophisticated natural language understanding, reasoning,
learning, and acting capabilities unified within a collabora-
tive agent architecture. In this paper, we report on recent
work on how this agent combines its capabilities to learn
new tasks. A recent evaluation shows great promise: our
system can quickly learn new tasks from human subjects
using modest amounts of interaction.

Background

In previous work, researchers have attempted to learn new
tasks by observation, creating agents that learn through
observing an expert’s demonstration (Angros et al. 2002,
Lau & Weld 1999; Lent & Laird 2001). These techniques
require observing multiple examples of the same task, and
the number of training examples required increases dra-
matically with the complexity of the task. To be effective,
however, collaborative assistants need to be able to acquire

Copyright © 2007, Association for the Advancement of Artificial Intelli-

gence (www.aaai.org). All rights reserved.

tasks much more quickly – typically from a single exam-
ple, possibly with some clarification dialogue. To enable
this, in our system the teacher not only demonstrates the
task, but also gives a “play-by-play” description of what
they are doing. This is a natural method that people already
use when teaching other people, and our system exploits
this natural capability. By combining the information from
understanding with prior knowledge and a concrete exam-
ple demonstrated by the user, our system can learn com-
plex tasks involving iterative loops in a single short train-
ing session.

Task Learning Challenges

As in all learning, a core challenge in task learning is iden-
tifying the appropriate generalizations, which are key to
allow the learned task model to be successfully applied to
new arguments in new contexts. When viewing this as a
traditional learning-by-observation problem using traces of
executions, an additional challenge involves identifying
parts of the task models that are not explicit in the ob-
served actions. For instance, if a user executes a condi-
tional step equivalent to the form, “if A then B else C”,
then the trace will only contain one action, B or C, depend-
ing on whether the “hidden” condition A is true. Even if
we have multiple training examples we still only observe
that either B or C is performed. Identifying that A is the
relevant condition from the context is an exceptionally
hard problem that requires considering the entire context of
the demonstration as training data.

In our approach, we identify the condition A from one
example because the demonstrator often mentions the con-

dition in the play-by-play commentary. When viewed from
the perspective of human learning and/or integrated agents,
this is a completely natural and ordinary example. Our
agent fuses the information from the language understand-
ing with the observed demonstration to construct these
complex task models.

There are many other aspects of tasks that are difficult to
learn but become much easier with a play-by-play. Some
of the key ones include:
• Identifying the correct parameterization: is a value in

the training an example of a parameter value or a con-
stant? What is the relation between the values used in
the training? What is the input or the output?

• Identifying the boundaries of iterative loops: is an ob-
served action the start of a loop, a normal step, or the
end of a loop?

• Loop termination conditions: what is the condition that
caused the termination of the loop?

• Hierarchical structure: what subtasks were performed
in the demonstration?

• Task goals: what is the end goal of the task?

In all these cases, the user frequently provides exactly the
information that is needed in their running play-by-play.
By combining language understanding and learning from
examples, PLOW can identify intended procedures from
just a single demonstration.

To give an idea of what tasks we are trying to learn, Figure
1 shows ten questions that were used in the system evalua-
tion. The tasks were designed by an outside group and un-
known to the developers prior to the test. We will discuss
how well the system did later in the paper.

The PLOW System

While language greatly enhances the training, this is not to
say that task learning becomes easy to accomplish. To cre-
ate an effective learning system, we need to integrate deep
language understanding, reasoning, dialogue and machine
learning, integrated within a collaborative agent architec-
ture. This section gives a brief overview of the system.

The Interface

PLOW learns tasks that can be performed within a web
browser. These are typically information management
tasks, e.g., finding appropriate sources, retrieving informa-
tion, filing requisitions, booking flights, and purchasing
things. Figure 2 shows PLOW’s user interface. The main
window on the left shows the Mozilla browser, instru-
mented so that PLOW can monitor user actions. On the
right is the procedure that PLOW has learned so far, sum-
marized back in language from the task model using the
system’s language generation capabilities. Across the bot-
tom is a chat window that shows the most recent interac-

tions. The user can switch between speech and keyboard
throughout the interaction.

The Agent Architecture

A high-level view of the PLOW agent architecture is
shown in Figure 3. The understanding components com-
bine natural language (speech or keyboard) with the ob-
served user actions on the GUI. After full parsing, seman-
tic interpretation and discourse interpretation produce plau-
sible intended actions. These are passed to the collabora-
tive problem solving (CPS) agent, which settles on the
most likely intended interpretation given the current prob-
lem solving context. Depending on the actions, the CPS
agent then drives other parts of the system. For example, if
the recognized user action is to demonstrate the next step
in the task, the CPS agent invokes task learning, which if
successful will update the task models in the knowledge
base. If, on the other hand, the recognized user intent is to
request the execution of a (sub)task, the CPS agent at-
tempts to look up a task that can accomplish this action in
the knowledge base. It then invokes the execution system
to perform the task. During collaborative learning, the sys-
tem may actually do both – it may learn a new step in the
task being learned, but because it already knows how to do
the subtask, it also performs that subtask for the user. This
type of collaborative execution while learning is critical in
enabling the learning of iterative steps without requiring
the user to tediously demonstrate each loop through the
iteration.

Language Processing

Language understanding and dialogue management is ac-
complished using the TRIPS system (for details, see Allen
et al. 2001, Ferguson & Allen 1998), which provides the
architecture and domain-independent capabilities for sup-
porting dialogue-based, mixed-initiative problem solving
in a range of different applications and domains. Its cen-

Figure 1: Previously unseen tasks used in the evaluation

Figure 2: The PLOW Interface

1. What <businesses> are within <distance> of <address>?

2. Get directions for <integer> number of restaurants

within <distance> of <address>.

3. Find articles related to <topic> written for <project>.

4. Which <project> had the greatest travel expenses be-

tween <start date> and <end date>?

5. What is the most expensive purchase approved between

<start date> and <end date>?

6. For what reason did <person> travel for <project> be-

tween <start date> and <end date>?

7. Find <ground-transport, parking> information for <air-

port>.

8. Who should have been notified that <person> was out of

the office between <start date> and <end date>?

9. Summarize all travel and purchase costs for <project>

between <date> and <date> by expense category

10. Which projects exceeded the current government maxi-

mum allowable expense for travel costs?

tral components are based on a domain-independent repre-
sentation, including a linguistically based semantic form
(the Logical Form, or LF), illocutionary acts, and a col-
laborative problem-solving model. Domain independence
is critical for portability between domains: the system can
be tailored to individual domains through an ontology
mapping between the domain-independent representations
and the domain-specific representations (Dzikovska et al.
2003).
The parser uses a broad coverage, domain-independent
lexicon and grammar to produce the LF, a detailed descrip-
tion of the semantic content of the input. The LF is a flat,
unscoped representation that supports robust parsing and
interpretation. It consists of a set of terms that describe the
objects and relationships evoked by an utterance. The LF
includes surface speech act analysis, dependency informa-
tion, and word senses (semantic types) with semantic roles
derived from a domain-independent language ontology.
The parser disambiguates word senses based on linguisti-
cally motivated selectional restrictions encoded in the se-
mantic types and roles. Word senses that have domain-
specific mappings are tried first by the parser to improve
parsing speed and accuracy.

The TRIPS system has been described in detail previ-
ously, so we will not go into more detail here. Also not
discussed are the speech recognition issues, where we use
dynamically changing language models that continuously
add new words found in the context (details forthcoming),
and our generation capability, which combines symbolic
and statistical models to produce real-time broad coverage
generation (Chambers 2005). This paper focuses on how
deep understanding of language is used for task learning,
rather than how language processing is accomplished.

Instrumentation

To enable effective learning from demonstration, getting
the right level of analysis for the instrumentation is critical.
It is relatively easy, for instance, to obtain a trace of the
mouse movements and gestures that a user performed, but
this does not help to understand the significance of what
action is being performed, nor can it be used to execute the
task later in a different context. Similarly, tracing the back-
end API calls of the GUI identifies what the user did, but
not how they did it. This makes it impossible to identify
the critical decision-making processes needed to handle
new examples.

Our instrumentation takes the middle ground. We inter-
pret user actions in terms of the underlying DOM represen-
tation that the browser uses to generate the GUI contents of
the window (e.g., clicking buttons, filling in fields, select-
ing objects on screen) and we record key events that occur
in response (e.g., new page loaded). If the web consisted of
pages derived from well designed basic HTML sources,
this would be fairly straightforward. But life is not like
that. Significant effort is needed to handle the range of
phenomena found in real-life web pages.

Learning Tasks

This section considers a series of challenges in task learn-
ing and shows how PLOW addresses these issues using a
combination of language understanding, intention recogni-
tion, reasoning and machine learning. The problems can be
divided into learning perception/actuation actions (i.e.,
“primitive” or “non-decomposable” actions), and learning
the higher-level control structures, including identifying
hierarchical structure, control structures, and parameteriza-
tion.

Learning Primitive Actions

Consider a situation in which the user is teaching PLOW
how to fill in a search form at a bookseller’s site (perhaps
as part of a book-buying task); the user says, “Put the name

here” and then fills in the author’s name in the form field
as shown in Figure 4 (left-hand side). The results from the
language understanding and GUI instrumentation are also
shown.
 PLOW now must combine the information about what
the user said and the action they performed in order to
learn a useful generalization. It starts a heuristic search
through the DOM representation starting from the clicked
node, looking for labels and tags that might be related to
the semantic concept *FULLNAME, produced by the
parser. In this case, it finds a text node with the content
“Author’s name” in a nearby subtree (the search space is
marked with a dotted line in the figure). Using the lexicon
and ontology, it can easily determine that “name” is rele-
vant to the concept *FULLNAME. In other cases, it might
find a label “author” or some other semantically related
concept and identify that. The heuristic search combines a
structural distance metric (applied to the path from the se-
lected node to the candidate node) and a semantic metric
(the semantic similarity of the label to the concepts in the
utterance) and returns the best match. If no reasonable

Figure 3: The Collaborative Agent Architecture

match is found, it resorts to using just structural properties
of the DOM tree.

PLOW uses the best match to synthesize a retrieval rule
for future use in finding the text field. It attempts to pro-
duce a rule that generalizes away from the specific onto-
logical concept *FULLNAME and could apply to any con-
cept (a natural language gloss of the rule is shown on the
right hand side of Figure 4).

After learning this rule based on a single example,
PLOW can not only perform the action “find the author
field” on this site, but actually can find other text fields on
the site (for example, the book title field). In an evaluation
of this technique, we determined that after learning how to
find the “books” tab, it successfully found other tabs 95%
of the time on Barnes & Noble’s website, and 98% on
Amazon (for details and other examples, see Chambers et
al, 2006).

Learning Effective Parameterization

One of the main challenges to learning even simple
straight-line procedures is identifying the appropriate pa-
rameterization. When an object is used in a demonstration,
the system has to be able to determine whether it is simply
being used as an example and as an input parameter,
whether it should be a constant in the procedure, or
whether is has some relational dependency to other pa-
rameters already in the procedure. In addition, PLOW must
determine which parameters are needed as the output pa-
rameters of the procedure.

With traditional techniques for learning from observa-
tion, it is impossible to identify such information reliably
from one example. With additional information from lan-
guage, however, we can generalize from one example quite
effectively. Figure 5 shows excerpts from an actual dia-
logue for finding hotels near an address and the key fea-
tures PLOW used to derive its interpretation. First, much
information can be obtained from language through the
definiteness feature. An indefinite noun phrase such as “an

address” is very likely to be an input parameter, and a defi-
nite noun phrase is not. In general, definite noun phrases
are resolved using TRIPS’ reference resolution capability,

capability, connecting the same instances of the parameters
as they are used in the task. In the case of “the zip code”,
the reference resolution component handles the bridging
reference using ontological information to interpret this as
the zip code of the previously mentioned address.

Learning Hierarchical Structure

For the challenge of identifying the appropriate task hierar-
chy, the PLOW system uses a simple strategy for identify-
ing the beginning of new subprocedures: Any statement
that explicitly identifies a goal, e.g., “Now let me show you

how to …” or “Now we need to find the zip code”, is
treated as the beginning of a new procedure to accomplish
the mentioned goal. In order to work effectively, however,
the user needs to explicitly indicate when the subprocedure
is completed (e.g., “We’re done here” or “We’re done find-

ing the zip code”). This requirement may not be completely
natural, but we have found anecdotally that it is easy to
pick up and remains intuitive.

Learning Iteration

Learning iterative procedures in one shot is a significant
challenge for several reasons, including the fact that users

Figure 4: Learning to find and fill a text field

Utterance Interpretation Key Features

hotels -> Out-

put Parameter

(list of hotels)

- Bare plural

- Object of information-

producing action “find”

Let me

show you

how to find

hotels near

an address
an address ->

input parameter

of type address

- Indefinite

- No deictic action

Put hotels

here

hotels -> con-

stant

- Bare plural

- Identical to the text

typed in the user action

Put the zip

code here

the zip code ->

function on

address pa-

rameter

- Definite reference

- Ontology (zip code is

role of address)

Figure 5: Interpreting Noun Phrases

typically do not want to demonstrate lengthy iterations.
Unfortunately, task learning algorithms based on pure
demonstration require many examples in order to induce
the intended control structure. Again, language comes to
the rescue, but we found this was not enough. To create a
useful user experience, we needed to make the learning
system much more active, using dialog to obtain additional
information when needed.

When learning iterations, PLOW takes the initiative to
help the user execute the task being demonstrated. For in-
stance, after the user identifies the initial step of an itera-
tion over a list, PLOW attempts to repeat the step over the
rest of the items in the list. This provides a natural oppor-
tunity for the user to immediately correct problems that
arise from generalizing from a single training example.
Figure 6 shows an example. The user is teaching PLOW
how to find hotels near an address. The user starts by high-
lighting a list of results (Figure 6a) and saying “here is a

list of results.” From the fact that the user identified a list,
PLOW posits that the user is defining an iteration over the
items in the list. It invokes its ability to parse the DOM tree
and identify the individual elements, presenting the parsed
results to the user (Figure 6b). The user can now operate on
individual elements. In the example, the user highlights the
title of the hotel and says, “This is the hotel name” (Figure
6c). Given this, PLOW then learns the extraction pattern
and applies the rule to all the other elements, showing the
results in a new column (Figure 6d). The user can browse
through the results; if they find an error (typically that no
information was extracted for an element), the user can
signal an error (e.g., say “this is wrong”) and then provide
another example. PLOW then learns an extraction rule
from these two examples. This process can continue, with
the user providing more examples until a comprehensive
pattern is learned.

In addition, the user can teach the system how to iterate
over pages of information by identifying the element for
the next page (e.g., “Click the next button for more results”
– see Figure 6e). In this case, PLOW does not know the
duration of the iteration and will ask the user how many
results they wish to find. The system understands a range
of responses including “get two pages,” “twenty items” and
“until the distance is greater than 2 miles.” The latter
makes sense only if the user has taught the system how to
extract the distance from the elements in the iteration, and
it is supported by the system’s ability to interpret extracted
information (e.g., the text “2.56 miles”) on the fly.

Using this mixed-initiative form of learning, we have
found users can easily define simple iterations in a way
that is fairly intuitive and easy to use.

Evaluation

While we have shown examples of how integrating lan-
guage, dialogue, reasoning and learning has great potential
for effective one-shot task learning, the real test is whether
ordinary users can quickly learn to use the system to teach
new procedures. There are many issues to be concerned
about: (1) Do we have comprehensive enough natural lan-
guage understanding capabilities so that users expressing
information in intuitive ways are likely to be understood?
(2) Can the system really learn robust task models from a
single example? (3) Can the users easily determine whether
the system is learning correctly as they are teaching the
system? Significant engineering went into the PLOW 2006
system to address these issues.

In August 2006, we delivered a version of the PLOW
system to independently contracted evaluators. At that
point, we had developed the system to ensure that we (the
developers) could effectively teach PLOW to learn how to
answer seventeen pre-determined test question templates.

Figure 6: Learning Iterative Steps

The evaluators recruited 16 test subjects, who received
general training on how to use PLOW and many other ap-
plications that were part of the overall project evaluation.
Among these were three other task learning systems: one
learned entirely from passive observation; one used a so-
phisticated GUI primarily designed for editing procedures
but extended to allow the definition of new procedures;
and the third used an NL-like query and specification lan-
guage that required users to have a detailed knowledge of
HTML producing the web pages.

After training, the subjects then performed the first part
of the test, in which they had to use different systems to
teach some subset of the predefined test questions. Seven
of these involved the PLOW system. Once the procedures
were learned by the systems, the evaluators created a set of
new test examples by specifying values for the input pa-
rameters to the task and then scored the results from exe-
cuting the learned task models using predetermined scoring
metrics individualized to each question. The PLOW system
did well on this test, scoring 2.82 out of 4 across all test
questions and the 16 subjects.

The second part of the test involved a set of 10 new
“surprise” test questions not previously seen by any of the
developers (see Figure 1). Some of these were close vari-
ants of the original test questions, and some were entirely
new tasks. The sixteen subjects had one work day to teach
whichever of these surprise tasks they wished, using
whichever of the task learning systems they wished. As a
result, this test reveals not only the core capability for
learning new tasks, but also evaluates the usability of the
four task learning systems.

PLOW did very well on this test on all measures. Out of
the 16 users, thirteen of them used PLOW to teach at least
one question. Of the other systems, the next most used
system was used by eight users. If we look at the total
number of tasks successfully taught, we see that PLOW
was used to teach 30 out of the 55 task models that were
constructed during the day (see Figure 7). Furthermore, the
tasks constructed using PLOW received the highest aver-
age score in the testing (2.2 out of 4).

Concluding Remarks

By integrating natural language understanding, reasoning,
learning, and acting capabilities, it is possible to develop
systems that can learn complex task models in one short
session with a teacher, using an intuitive language-based
interface that requires relatively little training to use. While
the PLOW system was preferred over the alternatives in
the test, this does not mean, however, that the subjects
found any of the current systems easy to use. Sixteen sub-
jects put in a full work day to teach only 55 task models
(just over 3 tasks per subject). Because of robustness issues
in the software, and difficulties in being able to effectively
confirm understanding as the tasks were being taught, the
users had to persevere to construct good task models.
Much of this, we believe, will be fixed by better engineer-
ing, improvements in the learning algorithms, and better

mechanisms for displaying the information that PLOW has
learned throughout the interaction.

References

Allen, J.; Byron, D.K.; Dzikovska, M.; Ferguson, G.; Galescu, L.;

and Stent, A. 2001. Towards Conversational Human-Computer

Interaction. AI Magazine, 22(4):27-37.

Angros, R.; Johnson, L.; Rickel, J.; and Scholer A. 2002. Learn-

ing Domain Knowledge for Teaching Procedural Skills, Proceed-

ings of the International Joint Conference on Autonomous Agents

and Multi-Agent Systems.

Blythe, J. 2005. Task Learning by Instruction in Tailor. Proceed-

ings of the International Conference on Intelligent User Inter-

faces.

Chambers, N. 2005. Real-Time Stochastic Language Generation

for Dialogue Systems�. Proceedings of the European Workshop

for Natural Language Generation.

Chambers, N.; Allen, J.: Galescu, L.; Jung, H.; and Taysom, W.

2006. Using Semantics to Identify Web Objects. Proceedings of

the National Conference on Artificial Intelligence.

Dzikovska, M.; Allen, J.; and Swift, M. 2003. Integrating linguis-

tic and domain knowledge for spoken dialogue systems in multi-

ple domains. In Proceedings of IJCAI Workshop on Knowledge

and Reasoning in Practical Dialogue Systems.

Ferguson, G., and Allen, J. 1998. TRIPS: An Integrated Intelli-

gent Problem-Solving Assistant. Proceedings of the National

Conference on Artificial Intelligence.

Lau, T.; Bergman, L.; Castelli, V.; and Oblinger, D. 2004 Sheep

Dog: Learning Procedures for Technical Support, Proceedings of

the International Conference on Intelligent User Interface.

Lau, T. and Weld, D. 1999. Programming by Demonstration: An

Inductive Learning Formulation. Proceedings of the International

Conference on Intelligent User Interfaces.

Lee F.; and Anderson, J. 1997 Learning to act: Acquisition and

Optimization of Procedural Skill, Proceedings of the Annual Con-

ference of the Cognitive Science Society.

Lent, M. and Laird, J. 2001. Learning Procedural Knowledge

through Observation, Proceedings of the International Confer-

ence on Knowledge Capture.

Figure 7: Systems Selected in Teaching Surprise Tasks

