Third Edition

Principles Of
Programming Languages

Design, Evaluation, and Implementation

Bruce J. MaclLennan

University of Tennessee, Knoxville

New York e Oxford
Oxford University Press
1999

To Gail and Kimberly

Oxford University Press

Oxford New York

Athens Auckland Bangkok Bogotd Buenos Aires Calcutta

Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris Sio Paulo Singapore Taipei Tokyo Toronto Warsaw

and associated companies in
Berlin Ibadan

Copyright © 1999 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.,
198 Madison Avenue, New York, New York, 10016
http://www.oup-usa.org

Al rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
MacLennan, Bruce J.
Principles of programming languages : design, evaluation, and
implementation / Bruce J. MacLennan. — 3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-19-511306-3 (cloth)
1. Programming languages (Electronic computers) 1. Title.
QA76.7.M33 1999
005.13—dc21 98-27755
CIP

Printing (last digit): 9 8 7 6 5 4 3

Printed in the United States of America
on acid-free paper

Contents

Preface to the Third Edition vii
Preface ix
Concept Directory xiii

HISTORY, MOTIVATION, AND EVALUATION xiii
DESIGN AND IMPLEMENTATION Xiv
PRINCIPLES xvi

IMPLEMENTATION Xvii

0. Introduction 1
1. The Beginning: Pseudo-Code Interpreters 7
1.1 HISTORY AND MOTIVATION 7
1.2 DESIGN OF A PSEUDO-CODE 11
1.3 IMPLEMENTATION 21
1.4 PHENOMENOLOGY OF PROGRAMMING LANGUAGES 33
1.5 EVALUATION AND EPILOG 36
Exercises 37
2. Emphasis On Effiency: Fortran 39
2.1 HISTORY AND MOTIVATION 39
2.2 DESIGN: STRUCTURAL ORGANIZATION 41
2.3 DESIGN: CONTROL STRUCTURES 44
2.4 DESIGN: DATA STRUCTURES 66

iv

CONTENTS

2.5
2.6
2.7

DESIGN: NAME STRUCTURES 75
DESIGN: SYNTACTIC STRUCTURES 85
EVALUATION AND EPILOG 90

Exercises 92

Generality and Hierarchy: Algol-60 95

3.1
3.2
3.3
34
35

HISTORY AND MOTIVATION 95

DESIGN: STRUCTURAL ORGANIZATION 97
DESIGN: NAME STRUCTURES 101

DESIGN: DATA STRUCTURES 115

DESIGN: CONTROL STRUCTURES 121

Exercises 140

Syntax and Elegance: Algol-60 143

4.1
4.2
4.3
4.4

DESIGN: SYNTACTIC STRUCTURES 143
DESCRIPTIVE TOOLS: BNF 148
DESIGN: ELEGANCE 156

EVALUATION AND EPILOG 161

Exercises 164

Return to Simplicity: Pascal 167

5.1
5.2
5.3
5.4
55
5.6

HISTORY AND MOTIVATION 167

DESIGN: STRUCTURAL ORGANIZATION 171
DESIGN: DATA STRUCTURES 172

DESIGN: NAME STRUCTURES 193

DESIGN: CONTROL STRUCTURES 196
EVALUATION AND EPILOG 205

Exercises 208

Implementation of Block-Structured Languages

211

6.1

ACTIVATION RECORDS AND CONTEXT 211

6.2
6.3
6.4
6.5

CONTENTS

PROCEDURE CALL AND RETURN 218
DISPLAY METHOD 231

BLOCKS 235

SUMMARY 239

Exercises 240

v

7. Modularity and Data Abstraction: ADA 243
7.1 HISTORY AND MOTIVATION 243

7.2 DESIGN: STRUCTURAL ORGANIZATION 246
7.3 DESIGN: DATA STRUCTURES AND TYPING 248
7.4 DESIGN: NAME STRUCTURES 256

Exercises 279

Procedures and Concurrency: ADA 281

8.1
8.2
8.3

DESIGN: CONTROL STRUCTURES 281
DESIGN: SYNTACTIC STRUCTURES 299
EVALUATION AND EPILOG 303
Exercises 306

List Processing: LISP 309

9.1
9.2
9.3

10.

HISTORY AND MOTIVATION 309

DESIGN: STRUCTURAL ORGANIZATION 312
DESIGN: DATA STRUCTURES 317

Exercises 342

Functional Programming: LISP 343

10.1 DESIGN: CONTROL STRUCTURES 343
10.2 DESIGN: NAME STRUCTURES 363
10.3 DESIGN: SYNTACTIC STRUCTURES 370

Exercises 372

vi

CONTENTS

11.

Implementation of Recursive List-Processors: LISP

375

11.1
11.2
11.3

12.

RECURSIVE INTERPRETERS 375
STORAGE RECLAMATION 388
EVALUATION AND EPILOG 394

Exercises 401

Object-Oriented Programming: Smalltalk 403

12.1
12.2
12.3
12.4
12.5
12.6
12.7

13.

HISTORY AND MOTIVATION 403

DESIGN: STRUCTURAL ORGANIZATION 405
DESIGN: CLASSES AND SUBCLASSES 411
DESIGN: OBJECTS AND MESSAGE SENDING 421
IMPLEMENTATION: CLASSES AND OBJECTS 428
DESIGN: OBJECT-ORIENTED EXTENSIONS 436
EVALUATION AND EPILOG 442

Exercises 444

Logic Programming: Prolog 445

13.1
13.2
13.3
13.4
13.5

14.

HISTORY AND MOTIVATION 445

DESIGN: STRUCTURAL ORGANIZATION 447
DESIGN: DATA STRUCTURES 451)
DESIGN: CONTROL STRUCTURES 461
EVALUATION AND EPILOG 489

Exercises 490

Principles of Language Design 493

14.1
14.2

GENERAL REMARKS 493
PRINCIPLES 495
Exercises 496

Bibliography 498

Index

500

Preface to the
Third Edition

Another damned, thick, square book! Always scribble, scribble! Eh! Mr. Gibbon?
—Duke of Gloucester (1743—-1805)

There is virtue in small books. There is also a disconcerting tendency for books to get longer
with each succeeding edition. I have attempted to combat that tendency in this new third edi-
tion of Principles of Programming Languages.

In particular, I have resisted the temptation to discuss additional programming languages.
The reason is that the languages are the means rather than the end. Every language I have
included, in addition to being well known or important in its own right, is intended to illus-
trate a number of important language design principles. In the interest of economy I have at-
tempted to use the minimum number of languages that cover the relevant topics. Any more
would be superfluous.

The new edition of this text remains true to its original conception: a series of case stud-
ies to illustrate the principles of programming language design, evaluation, and implemen-
tation. To this end, I have attempted to include only those topics that support this goal and
to exclude all that are extraneous. No doubt I have erred on both sides, but that has been my
aim.

There are several advantages to concentrating on the enduring principles of program-
ming language design rather than on the details of an assortment of fashionable languages.
The advantage for the author is that the book is stable in the face of the waxing and waning
popularity of the languages. More important, however, is the advantage for students, for this
stability means that their knowledge will be useful throughout their careers, not just until the
next programming language invention. Nevertheless, after much consideration I have added
three design principles, since it has been my experience that their goals should be articulated
clearly. Although they were implicit in previous editions, they are now explicit.

Part of the conception of this book is that programming languages can be understood
only in their technological and societal context. In this respect, more changes to the book
have been necessary, for computer science continues to evolve, and history is always writ-
ten from the perspective of the present. In this way we refine our understanding of the past
and relate it to our current concerns.

vii

viii

PREFACE TO THE THIRD EDITION

There are many ways to organize a programming language textbook, as dictated by the
author’s vision of the field. I am grateful to the teachers who have found my vision to be
compatible with their own and have found this book to be a useful means to their ends. Over
the years I have benefitted from the suggestions and criticisms of these teachers and their
students, and so I hope this new edition will be an even better tool for the task.

The third edition also includes new exercises. As in the previous editions, some of them
are simple tests of comprehension, while others (marked with an asterisk) are design or eval-
uation problems requiring more time and thought; exercises with two asterisks are major pro-
jects. Although I believe students will get more from the more complicated questions. I re-
alize that they may be inappropriate in large classes, for which short-answer and mathematical
exercises are more useful.

Thanks are also due to my wife Gail and daughter Kimberly for the patience with which
they have so long endured my ranting about “the damned, thick book.”

Preface

PURPOSE

SCOPE

The purpose of this book is to teach the skills required to design and implement program-
ming languages. Design is an important topic for all computer science students regardless of
whether they will ever have to create a programming language. The user who understands
the motivation for various language facilities will be able to use them more intelligently. The
compiler writer who understands the motivation for these facilities will be able to implement
them more reasonably. Implementation is also an important topic since the language designer
must be aware of the costs of the facilities provided. Both topics are important to all com-
puter scientists because all computer scientists use languages and because there is an in-
creasing number of language-like human interfaces (word processors, command languages,
etc.) that require these skills in their development. Thus, this book treats the design and im-
plementation of programming languages as fundamental skills that all computer scientists
should possess.

All designers, whether architects, aeronautical engineers, electrical engineers, and so on,
require descriptive skills, techniques, and notations for communicating their ideas to their
clients, to other designers, and to implementers. The ability of descriptive tools to abstract
important characteristics of a design and omit irrelevant details makes these tools valuable
for comparing and evaluating designs. Thus, this book aims to teach the descriptive tools
important to programming language design and implementation.

History is an important aspect of any design discipline. Often the designs used in the
past can be understood only in their historical context. Also, it is important that the student
be aware of the designs tried in the past and why they succeeded or failed. Thus, this book
presents language facilities and styles in their historical context.

In a rapidly moving field such as computer science, there is a danger that any book will be
out of date in a few years. Worse, there is the danger that a computer scientist’s knowledge

ix

X

PREFACE

will soon be out of date. It is therefore imperative that we teach principles of enduring value
rather than technical details that are soon obsolete. As a result, the implementation techniques
discussed in this book are seminal; they form the basis of techniques that are likely to be
useful for a long time to come and that can be varied to achieve a wide range of goals. Prin-
ciples are emphasized more than details.

However, this alone is not sufficient to prevent the explosion of knowledge. Rather than
trying to present all of the important language styles, language facilities, descriptive tools,
and implementation techniques, this book instructs the student in the creation of these things.
In the long run this will be much more valuable, since most of the specific techniques we
teach will become obsolete. The techniques become obsolete in part because of the activity
of those who can create new techniques. Methods are emphasized more than results.

Experience with programming languages has shown that although the syntactic form of
a language is important, the real effectiveness of a language is determined by its semantics.
In other words, what we say is more important than exactly the way we say it. For this rea-
son, this book compares and evaluates languages on the basis of what can be said in the lan-
guage rather than the details of their syntax. By the same token, the implementation of se-
mantics (i.e., the run-time organization) is stressed at the expense of the implementation of
syntax (i.e., parsing). Semantics is emphasized more than syntax.

ORGANIZATION

There are two basic ways a programming language text can present the characteristics of a
number of languages: horizontally and vertically. In a vertical organization, various language
topics are treated one by one, tracing each through several languages. For example, one chap-
ter may treat procedures, discussing their characteristics in FORTRAN, Algol, and Pascal.
Another chapter may discuss scope in FORTRAN, Algol, and LISP, and so forth, for all the
various facilities. One danger of a vertical organization is that it is apt to degenerate into a
catalog of features.

A horizontal organization treats languages as wholes. For example, one chapter would
discuss FORTRAN, covering procedures, scope, and other important characteristics. Another
chapter would discuss Algol, another Pascal, and so on. A horizontal organization is used in
this book because it facilitates discussing the interrelationships between the parts of a pro-
gramming language. This often overlooked aspect of language design is the cause of many
unforeseen complications. The horizontal approach is also necessary if languages are to be
considered in their historical context.

The importance of historical context leads to another organizing principle, summarized
as ontogeny recapitulates phylogeny. This principle means that if in the learning process, the
student repeats in summary form the historical learning process in the computer science field,
he or she will have a firmer grasp of the subject. This does not mean that the student must
be exposed to every mistake and explore every dead end in the field of programming lan-
guages; ontogeny recapitulates phylogeny, it does not duplicate it. Therefore this book is or-
ganized around a stripped down, or pruned, history of programming languages that allows
the student to see issues in their historical context and to appreciate the way languages evolve.

v

PREFACE Xi

Each technical field has its own set of peculiar concepts and terminology; programming
language design is no exception. Some of these concepts are of utmost importance; others
are details of transient value. It is crucial that the language designer understand the impor-
tant concepts fully, in all of their ramifications. For this to be the case, each concept must
be seen and investigated several times in a number of different contexts. When students fi-
nally see a formal definition of a concept in its full generality they will understand its im-
plications; it will not seem arbitrary, as definitions so often do. Thus, an inductive, or bottom-
up, approach is used for presenting concepts and abstractions.

Conversely, a top-down approach is used for presenting the structures and facilities that
are found in programming languages. The reason is that a programming language facility or
feature is best understood in context, that is, in terms of its function with respect to the rest
l of the language and the goals of the language. Thus, structures and facilities are presented
z in their functional context. This will help the student to understand the language as a uni-
* fied whole.

The result of these considerations is that the book as a whole is organized horizontally,
and each chapter is organized vertically. That is, each language is analyzed into its major
structural subsystems.

In all cases the goal has been to give the student a comprehensive understanding of the
most important aspects of programming language design and implementation.

This book is intended for a one-semester course; for shorter courses some of the later
chapters (such as Chapters 12 or 13) can be omitted if necessary. It is suggested that, no mat-
ter what else is skipped, time be reserved at the end of the course for discussing the content
of Chapter 14, “Principles of Language Design.”

Most of the problems are practical exercises in language design. They could form the
basis for a separate language-design laboratory or for classroom discussion. In a few cases
they are potential thesis topics.

In accord with the book’s goal of emphasizing broad principles rather than details, no
language is presented in full. The student will not find syntax charts for FORTRAN, Pascal,
or Ada. Further, it is unlikely that students will be able to program in any of these languages
solely on the basis of their description here. Instead, students will-learn the fundamental con-
cepts of programming languages, which will simplify their learning the details of whatever
languages they may have to use.

To make this book more versatile, a concept directory has been included in addition to
the more conventional index and table of contents. This is a vertically organized outline of
topics in language design. With it students can find, for example, all of the sections de-
scribing parameter passing modes.

ACKNOWLEDGMENTS

Several generations of students in my introductory programming languages course at the
Naval Postgraduate School have lived through early drafts of this book. Their comments,
criticisms, and tolerance are gratefully acknowledged.

The late R. W. Hamming contributed substantially to the completion of this book through

xii PREFACE

his encouragement, insightful reviews of early drafts, and many discussions of the philoso-
phy of book writing. I take this opportunity to acknowledge this debt publicly. Any errors
or inadequacies are, of course, my own responsibility.

Most important, I thank my wife, Gail, without whose constant support this book might
not have been completed.

Concept Directory

History, Meotivation, and Evaluation

A. P
1
2
3
4
5

B. P

O N O U b WN =

ROGRAMMING LANGUAGE GENERATIONS
. First generation 92

. Second generation 163

. Third generation 208

. Fourth generation 305

. Fifth generation 306
a. Function-oriented programming 400

b. Object-oriented programming 443
c¢. Logic-oriented programming 489
RINCIPAL SPECIFIC LANGUAGES
. Pseudo-codes ch. 1
. FORTRAN ch. 2
. Algol-60 chs. 3-4
. Pascal ch.5
. Ada chs. 7-8
. LISP chs. 9-11
. Smalltalk ch. 12
. Prolog ch. 13

t Note: Page numbers denote the entire subsection that begins on the specified page.

xiii

xiv CONCEPT DIRECTORY

Design and Implementation

A. STRUCTURAL ORGANIZATION

1. Imperative languages

a. Conventional languages 41-44
b. Object-oriented languages 405-411, 443

2. Applicative languages

a. Functional programming 312-316, 355-359, 400
b. Logic programming 445-450

. Feature interaction 77, 86, 136, 181, 288, 290
. Elegance 156-160

. Phenomenology 33-35

. Programming Environments 395-398, 443

o v b~ W

B. CONTROL STRUCTURES 44-61, 121-140, 461

1. Selection

a. Conditional
i. statement 15,46
ii. expression 127,310,343

b. Case 46, 139, 140, 199
c. Conditional logical connectives 344

2. lteration 281, 376-382

a. Definite 17, 51-53, 122, 137-138, 197
b. Indefinite 46, 48, 198

3. Hierarchical (procedures) 54-56, 127-132, 286-290, 423, 424, 465, 466

a. Parameter passing modes 286

i. input

e constant 202, 286

¢ reference 56-58

e value 128, 201

o functional 203, 225, 351-359, 367
ii. output 286

o reference 56-58

e result 286
iii. input-output 286, 466

e name 129-134

» reference 56-58, 201, 286

¢ value-result 60

b. Implementation
i. nonrecursive 61
ii. recursive

e nonretentive 211-234, 239, 382-388
s retentive 239, 385, 434

CONCEPT DIRECTORY XV

4. Nonhierarchical

a. Goto 15, 46-49, 125, 135, 228
b. Concurrency 291-295, 427
i. rendezvous 293
ii. message sending 406, 414-417, 423-424, 434
c. Coroutines 426
d. Exceptions 284

5. Nesting 46, 52, 122, 125, 301
6. Functionals 352, 359
7. Logic programming 461-474, 476-477

DATA STRUCTURES 66-73, 115-119, 172-191, 248-255, 317-340,
450-459

1. Primitives 66, 115, 172, 248, 317, 318, 450, 451
a. Discrete
i. numeric 317
* integer 66-69, 252-254
* fixed-point 248
ii. nonnumeric 69, 172-173
* Booleans 66, 318
* characters 172, 255
e atoms 314, 317-318, 331
b. Continuous (floating-point) 9, 66, 68
2. Constructors 451

a. Unstructured
i. enumerations 173, 255
ii. subranges 175, 248, 252-254
iii. pointers 189
b. Structured 183
i. homogeneous
® arrays 17, 70-73, 118, 179, 181, 254
* strings 69, 115, 172, 415, 416
* sets 176
ii. heterogeneous
* records 183, 186, 251
e lists 314, 315, 319-339, 452-455
iii. unions
¢ undiscriminated (free) 250
e discriminated 250
* variant records - 186

3. Typing
a. Strength -
i. strong 119
e static 181, 183
e dynamic 417, 422

Xvi CONCEPT DIRECTORY

ii. weak 49,69
. Type equivalence 191, 251-254
. Abstract data types 66, 173, 244, 264, 412, 416, 459
. Type conversions 68, 248
. Coercions 68
First- and second-class citizens 69, 115, 203

0o o0 o

D. NAME STRUCTURES 75, 101, 205

1. Primitives (binding constructs) 76, 257

. Constant declarations 193, 256, 257

. Variable declarations 28, 30, 75-78, 127, 256, 405, 412

. Type declarations 172, 251

. Procedure declarations 54, 78, 127, 194, 257, 340, 409

. Module declarations 264-276, 409-414, 436-440
Implicit bindings (enumeration types) 173, 255

. Binding time 28, 43, 100

. Overloading 68, 255, 278, 290, 415

i. Aliasing 82, 84, 186, 202, 338

TP HHhOO Q0 OP

2. Constructors (environments) 78

a. Disjoint environments 41, 78-81
b. Nested environments 102-112, 194-196, 211-217, 231-238, 258-261, 412, 414,
431, 432
c. Encapsulation
i. records 183
ii. packages 262-266, 436-439
iii. classes 409-418

d. Static versus dynamic scoping 107-111, 219, 284, 367, 385, 388
e. Shared access 80-84, 102, 105, 261, 267

E. SYNTACTIC STRUCTURES
1. Lexics 30, 85-88, 143-145
2. Syntax 30, 88-89, 146-147, 299-301, 370-371, 424
3. Extensibility 168-169, 414
4. Descriptive tools (BNF) 148-155

Principles

ABSTRACTION 17, 55
AUTOMATION 10
DEFENSE IN DEPTH 49
ELEGANCE 158, 176

oS0 ®>

—

]
il
}

£
H

,
&
H

PREROPOZICAT TIOTM

CONCEPT DIRECTORY

IMPOSSIBLE ERROR 11, 52, 57, 105
INFORMATION HIDING 80

LABELING 26, 199, 288

LOCALIZED COST 138

MANIFEST INTERFACE 316, 416
ORTHOGONALITY 13-14

PORTABILITY 45, 115, 143

PRESERVATION OF INFORMATION 53, 248

. REGULARITY 10

RESPONSIBLE DESIGN 114, 188
SECURITY 29, 58

SIMPLICITY 136, 168, 314
STRUCTURE 48, 125

SYNTACTIC CONSISTENCY 49, 299
ZERO-ONE-INFINITY 117

Implementation

xvii

A.

oSnNnw®

INTERPRETERS
1. lterative 21-30
2. Recursive 375-388

COMPILERS 11, 30, 85, 246 .
ACTIVATION RECORDS 61, 112, 127, 211-239, 432-434

. STORAGE MANAGEMENT

a. Static 28
b. Dynamic
i. stack 112,118, 211-239
ii. heap 388-394, 428-429, 432-434

SYSTEMS 43, 396-398, 443

 INTRODUCTION

WHAT IS A PROGRAMMING LANGUAGE?

The subject of this book is programming languages, specifically, the principles for their de-
sign, evaluation, and implementation. Thus, we must begin by saying what a programming
language is.

A programming language is a language intended for the description of programs. Often
a program is expressed in a programming language so that it can be executed on a computer.

| This is not the only use of programming languages, however. They may also be used by peo-

‘ ple to describe programs to other people. Indeed, since much of a programmer’s time is spent
reading programs, the understandability of a programming language to people is often more
important than its understandability to computers.

There are many languages that people use to control and interact with computers. These
can all be referred to as computer languages. Many of these languages are used for special
purposes, for example, for editing text, conducting transactions with a bank, or generating
reports. These special-purpose languages are not programming languages because they can-
not be used for general programming. We reserve the term programming language for a
computer language that can be used, at least in principle, to express any computer program.!
Thus, our final definition is

A programming language is a language that is intended for the expression of computer
programs and that is capable of expressing any computer program.

! This is not a vague notion. There is a precise theoretical way of determining whether a computer language
can be used to express any program, namely, by showing that it is equivalent to a universal Turing machine.
This topic is outside the scope of this book.

2

INTRODUCTION

THE DIFFERENCES AMONG PROGRAMMING LANGUAGES

a7

Since, by definition, any programming language can be used to express any program, it fol-
lows that all programming languages are equally powerful—any program that can be writ-
ten in one can also be written in another. Why, then, are there so many programming lan-
guages? And why should one study their differences, when in this very fundamental sense
they are all the same? The reason is that, although it’s possible to write any program in any
programming language, it’s not equally easy to do so. Thus, in this book, we will not be very
concerned with the theoretical power of programming languages (they’re all the same).
Rather, we concentrate on their practical power, as real tools used by real people. In this re-
gard they will be seen to differ in many important respects. But why devote so much time
to just one kind of tool?

IMPORTANCE OF THE STUDY OF PROGRAMMING LANGUAGES

Programming languages are important for students in all disciplines of computer science be-
cause they are the primary tools of the central activity of computer science: programming.
As a result, the progress of computer science can be traced in the progress of programming
languages, and many issues of computer science manifest themselves as programming lan-
guage issues. This is particularly true in programming methodology, where advances in lan-
guages and programming techniques have gone hand in hand. The reason is simple: Pro-
gramming languages remain the central tool for problem solving in computer science.

INFLUENCE OF LANGUAGES ON PROBLEM SOLVING

The Sapir—-Whorf hypothesis is a (still controversial) linguistic theory that states that the
structure of language defines the boundaries of thought. Although there is no evidence that
the use of a particular language will prevent us from thinking certain thoughts, it is the case
that a given language can facilitate or impede certain modes of thought and that languages
embody characteristic ways of dealing with the world and other people. When applied to
programming languages, the analogous statement is that although no programming language
can prevent us from finding certain solutions to a problem, a given language can influence
the class of solutions we are likely to see and the frame of mind with which we approach
programming, thus subtlely influencing the quality of our programs.

BENEFITS FOR ALL COMPUTER SCIENTISTS

The study of programming languages is important to anyone who uses them, that is, anyone
who programs. The reason is that from this study you will learn the motivation for and the

BENEFITS FOR LANGUAGE IMPLEMENTERS 3

use of the most important facilities found in modern programming languages. You will learn
the benefits of these facilities, as well as their costs, by studying the techniques used to im-
plement them. This will provide you with a basis for evaluating languages, which will aid
you in choosing the best language for your application. The understanding acquired of the
motivations for the facilities in a language will enable you to use those facilities to their

_fullest potential. The repertoire of language mechanisms with which you are familiar will
have been increased so that even if the language you must use does not provide the facili-
ties you need, you will be able to simulate them through your knowledge of their imple-
mentation.

There are many programming languages now in widespread use—many more than can
be taught to you as part of your computer science education. This means that in your com-
puter science career you will be required frequently to learn a new programming language
and to put it to effective use. Your speed in learning new languages is one aspect of your
versatility as a computer scientist. Fortunately, underneath the surface details most languages
are very similar. Therefore, the study of programming languages, by increasing the range of
facilities in which you are fluent, will enable you to see more that is familiar in any new lan-
guage that you encounter. This will speed your learning of new languages.

BENEFITS FOR LANGUAGE DESIGNERS

Although, as indicated above, the study of programming languages is important to all stu-
dents of computer science, it is especially important to certain disciplines. Obviously, it is
important if you are a student of language design. All engineering design is a cumulative
process; we learn from the successes and failures of the designs of the past. To this end it is
necessary to be familiar with the history of programming languages. As George Santayana
said, “Those who cannot remember the past are condemned to repeat it.” An understanding
of the reasons why certain designs have been tried in the past and later abandoned will help
you to develop a sense of good language design and to become skillful in making design
trade-offs. As R.W. Hamming has said, “We would know what they thought when they did
it.” To help you remember the lessons of the past, we have formulated and illustrated a num-
ber of maxims or principles of good programming language design. The central role these
play has dictated the book’s title: Principles of Programming Languages.

BENEFITS FOR LANGUAGE IMPLEMENTERS

If you are interested in language implementation, you will gain insight into the motivations
for various language facilities, thus allowing you to make reasonable implementation trade-
offs. Although language implementation is a complicated subject, requiring one or more
courses, this book presents the most useful and important techniques for implementing a
number of common programming language facilities. These are seminal techniques that can
be elaborated to satisfy more stringent requirements or varied to solve related problems; they
are a basis for further studies in language implementation.

4

INTRODUCTION

BENEFITS FOR HARDWARE ARCHITECTS

A

By understanding the requirements of programming language implementation, hardware ar-
chitects will gain insight into the ways machines may better support languages. More im-
portant, you will learn to design a semantically coherent machine—a machine with complete
and coherent sets of data types and operations on those data types. The reason for this is sim-
ple. Just as a programming language can be considered a virtual computer, that is, a com-
puter implemented in software, so a computer can be considered a programming language
implemented in hardware. This view suggests that many of the principles of programming
language design can be equally well applied to computer architecture, and indeed they can.

BENEFITS FOR SYSTEM DESIGNERS

Designers of all sorts of software systems (e.g., operating systems and database systems) will
learn principles and techniques applicable to all human interfaces. Many software tools in-
cluding operating system command languages, database systems, editors, text formatters, and
debuggers, have many of the characteristics of programming languages, and so the princi-
ples you learn here will be applicable to much of your future software design. The study of
both language design and implementation is obviously valuable here. Knowledge of pro-
gramming languages is more directly necessary for designers of file systems, linkage edi-
tors, and other software that must interface with programming languages.

BENEFITS FOR SOFTWARE MANAGERS

Finally, if you manage software development efforts, then you will- benefit in several ways
from the study of programming languages. The project manager often makes decisions re-
garding the language to be used on a given project, or whether an existing language should
be used or extended, or whether a completely new language should be designed. You will
be better able to do this if you know what common languages can and cannot do, and if you
know the current direction and state of the art of programming language research. You will
be better able to make these decisions if you know the costs of designing or extending a lan-
guage, the costs of implementing a language, and the benefits of various language facilities.

PLAN OF THE BOOK

In 1965 an American Mathematical Association Prospectus estimated that 1700 program-
ming languages were then in use.? In the intervening years, many more have been invented.

2 Quoted in P.J. Landin, “The Next 700 Programming Languages.” Commun. ACM 9, 3 (March 1966), p. 157.

A

PLAN OF THE BOOK 5

Clearly, it is impossible to discuss every language, or even a sizable fraction of them. How
have we chosen the languages to present in this book?

Certainly, we have chosen languages of actual or potential importance. All other things
being equal, we have chosen languages that you are likely to encounter in your career as a
computer scientist. But there are other, more important factors in our selection.

. An understanding of these factors is implicit in the purpose of this book—which is not
to teach you to program in half a dozen programming languages.? As noted before, there is
little chance that we could teach you just those languages you will later need to know. Rather,
our goal is to present the most important principles for the design, evaluation, and imple-
mentation of programming languages. To this end, we have chosen languages that will serve
as good case studies to illustrate these principles.

‘These principles have developed in a series of historical stages, each being a reaction to
the perceived problems and opportunities discovered in the previous stage. For this reason,
we have chosen programming languages that are illustrative of the major generations of pro-
gramming language evolution. Thus, FORTRAN, Algol-60, Pascal, and Ada are representa-
tives of the first, second, third, and fourth programming language generations.* We have
picked these particular languages because they form a single evolutionary line in the family
tree of programming languages.

Since language development is now entering the fifth generation, it is too early to pre-
dict what the next stage in programming language evolution will be. Therefore, we have il-
lustrated the fifth generation with representatives of three important new programming par-
adigms: function-oriented programming (LISP), object-oriented programming (Smalltalk),
and logic-oriented programming (PROLOG). It is likely that all three of these paradigms will
be important in the years to come.

3 Thus, there are few exercises in this book that require you to do significant programming in a language un-
der study. Attempting to evaluate a language on the basis of writing a few short programs in it is as mis-
leading as evaluating an automobile by driving it once or twice around the block. Meaningful evaluation re-
quires experience with large programs maintained over long periods, which is impractical in a course such
as this. As is often the case, if we are careful, we will learn more by vicarious experience than by direct ex-
perience.

4 Note that some authors use the term fourth-generation language to refer to various application generation

“packages. These are not programming languages in the sense referred to previously; we are discussing fourth-
generation programming languages.

