
LETTERS 

Robert L. Aslzedmrst, cditov acm forum 
Taulbee Survey Report 
I was disappointed in the report by 
David Gries on the 1984-1985 
Taulbee Survey (Communications, 
October 1986, pp. 972-977). Al- 
though it was well presented, 
reasonably laid out and, most 
likely, accurate, it was not useful 
information. Data in this form 
need commentary to become in- 
formation. I often hear of “indus- 
try eating its own seed corn” in 
reference to the hiring of Ph.D.‘s 
away from academia, and of a 
shortfall in Ph.D.‘s for computer 
science overall. I jumped at the 
chance to learn from the Gries 
report. Alas, there were no con- 
clusions drawn, no help for all us 
uninformed. I know that time 
spent pouring over the data would 
give me some feel for the condi- 
tion I am concerned over (e.g., po- 
tential lack of sufficient Ph.D.‘s), 
but I know I do not have the time 
and I fear I lack the knowledge to 
draw proper conclusions. 

Roger S. Gourd 
MASSCOMP 
One Technology Park 
Westford, MA 01886 

Response: 
Perhaps reader Gourd is right in 
asking for more commentary and 
conclusions. Inexperience, a 
reluctance to draw too many 
conclusions, and a lack of space all 
contributed to the form and 
content of the report. We will try 
to address this criticism in the 
next report. 

David Gries 
Department of Computer Science 
Cornell University 
405 Upson Hall 
Ithaca, NY 14853-7501 

Network Noted 
In the “Notable Computer Net- 
works” article by John S. Quar- 
terman and Josiah C. Hoskins 
(Communications, October 1986, 
932-971) a few company networks 
are detailed. One such network 
which is not detailed seems to be 
a fairly well-kept secret. This is 
the internal network belonging to 
Tandem Computers Incorporated. 
This network has 200 Nonstop 
hosts connected via 150 links con- 
sisting of microwave, laser, satel- 
lite, fiber, and copper running at 
speeds up to 3 Mbit/s. The aggre- 
gate processing power of this vir- 
tual machine is 1.6 BIPS (billion 
instructions per second). Both the 
systems and the network are fault- 
tolerant. 

A staff of four employees in 
Cupertino, CA, and one in Ger- 
many support the user community 
of 6500 hard-wired and 2500 dial- 
up terminals and PCs. While the 
network, spanning 23 countries, is 
running 24 hours a day, the sup- 
port staff works normal 40 hour 
weeks. Because of its fault-tolerant 
nature, communications failures 
are not critical to network connec- 
tivity. 

This ease of maintainability is 
due to Tandem’s proprietary pro- 
tocol, EXPAND, which is modeled 
after x.25. Addition, deletion or 
moves of hosts do not require a 
Network Sysgen. When a new host 
is added to the network, a “ripple 
effect” takes place until each host 
knows the best path to the new 
host. During a network failure and 
after the subsequent recovery, 
the network performs its own 
rerouting. 

The network supports over 100 
production applications including 

Electronic Mail, Order Entry, 
Manufacturing, VLSI Design, Cus- 
tomer Engineering Dispatch, Prob- 
lem Reporting and Software Patch 
Distribution. 

A typical Tandem electronic- 
mail name looks like 
‘LaPedis-Ron’, or ‘Payroll’, the 
second being a department name 
rather than a person. There is no 
need to specify the geographical 
location of a mail correspondent. 

An on-line telephone book, tele- 
phone messages, and request form 
application round out the average 
employee’s interface with the net- 
work. An article on the Tandem 
network has appeared in Data 
Communications magazine (August 
and September 1985). 

Ron LaPedis 
Corinne DeBra 

Tandem Computers Incorporated 
2 9191 Vallco Parkway 
Cupertino, CA 95024-2599 

“GOT0 Considered Harmful” 
Considered Harmful 
The most-noted item ever pub- 
lished in Communications was a 
letter from Edsger W. Dijkstra 
entitled “Go To Statement Con- 
sidered Harmful” [l] which at- 
tempted to give a reason why the 
GOT0 statement might be harm- 
ful. Although the argument was 
academic and unconvincing, its 
title seems to have become fixed 
in the mind of every programming 
manager and methodologist. Con- 
sequently, the notion that the 
GOT0 is harmful is accepted al- 
most universally, without question 
or doubt. To many people, “struc- 
tured programming” and “GOTO- 
less programming” have become 
synonymous. 

This has caused incalculable 

March 1987 Volume 30 Number 3 Communications of the ACM 195 



Forum 

harm to the field of programming, 
which has lost an efficacious tool. 
It is like butchers banning knives 
because workers sometimes cut 
themselves. Programmers must 
devise eIaborate workarounds, 
use extra flags, nest statements 
excessively, or use gratuitous sub- 
routines. The result is that GOTO- 
less programs are harder and cost- 
lier to create, test, and modi.fy. 
The cost to business has already 
been hundreds of millions of dol- 
lars in excess development and 
maintenance costs, plus the hid- 
den cost of programs never devel- 
oped due to insufficient resources. 

I have yet to see a single study 
that supported the supposition 
that GOTOs are harmful (I pre- 
sume this is not because nobody 
has tried). Nonetheless, people 
seem to need to believe that 
avoiding GOTOs will automati- 
cally make programs cheap and 
reliable. They will accept any 
statement affirming that belief, 
and dismiss any statement oppos- 
ing it. 

It has gone so far that some peo- 
ple have devised program com- 
plexity metrics penalizing GOTOs 
so heavily that any program with 
a GOT0 is ipso facto rated more 
complex than even the clumsiest 
GOTO-less program. Then they 
turn around and say, “See, the 
program with GOTOs is more 
complex.” In short, the belief that 
GOTOs are harmful appears to 
have become a religious doctrine, 
unassailable by evidence. 

I do not know if I can do any- 
thing that will dislodge such 
deeply entrenched dogma. At least 
I can attempt to reopen the discus- 
sion by showing ,a clearcut in- 
stance where GOTOs significantly 
reduce program complexity. 

I posed the following problem to 
a group of expert computer pro- 
grammers: “Let X be an N x N ma- 
lrix of integers. Write a program 
that will print the number of the 
first all-zero row of X, if any.” 

Three of the group regularly 
used GOTOs in-their work. They 
produced seven-line programs 
nearly identical to this: 

for i :=I ton 
dobegin 

forj :=ltondo 
if x[i, j]<>O 

thengoto reject; 
writeln 

('The firstall-zero 
row is I, i 

break; 
reject: end; 

The other ten programmers nor- 
mally avoided GOTOs. Eight of 
them produced 13 or 14-line pro- 
grams using a flag to indicate 
when an all-zero row was found. 
(The other two programs were 
either incorrect or far more com- 
plex.) The following is typical of 
the programs produced: 

i :=I; 

repeat 
j :=I; 

allzero :=true; 
while (j<=n)andallzero 
dobegin 

if x[i, j]OO 
thenallzero := false; 

j :=j+l; 
end; 
i :=i+l; 

until (i>n) or allzero; 
ifi<=n 

thenwriteln 
('The firstall-zero 

rowis I, i-l); 

After reviewing the various 
GOTO-less versions, I was able to 
eliminate the flag, and reduce the 
program to nine lines: 

i:=l; 
repeat 

j := 1; 

while(j<=n) 
and (x[i, j] =0) do 

j := j+l; 

i :=i+l; 
until(i>n)or (j>n); 
ifj>n 

thenwriteln 
('The firstall-zero 

row is' , i-l); 

By any measure not intention- 
ally biased against GOTOs, the 
two GOTO-less programs are more 
complex than the program using 
GOTOs. Aside from fewer lines of 
code, the program with GOTOs 
has only 13 operators, compared to 
21 and 19 for the GOTO-less pro- 
grams, and only 41 total tokens, 
compared to 74 and 66 for the 
other programs. More impor- 
tantly, the programmers who used 
GOTOs took less time to arrive at 
their solutions. 

In recent years I have taken 
over a number of programs that 
were written without GOTOs. As 
I introduce GOTOs to untangle 
each deeply nested mess of code, 
I have found that the number 
of lines of code often drops by 
20-25 percent, with a small de- 
crease in the total number of vari- 
ables. I conclude that the matrix 
example here is not an odd case, 
but typical of the improvements 
that using GOTOs can accomplish. 

I am aware that some awful pro- 
grams have been written using 
GOTOs. This is often the fault of 
the language (because it lacks 
other constructs), or the text edi- 
tor (because it lacks a block 
move). With a proper language 
and editor, and adequate instruc- 
tion in the use of GOTO, this 
should not be a consideration. 

All of my experiences compel 
me to conclude that it is time to 
part from the dogma of GOTO-less 
programming. It has failed to 
prove its merit. 

Frank Rubin 
The Contest Center 
P.O. Box 1660 
Wappingers Falls, NY 22590 

REFERENCE 
1. Dijkstra, E.W. "Go to statement considered 

harmful." Commun. ACM 11, 3 (Mar. 1968), 
147-148. 

196 Communications of the ACM March 1987 Volume 30 Number 3 


