
9/14/20

1

1

Pseudo-Code

CS4100
Dr. Martin

From Principles of Programming Languages: Design,
Evaluation, and Implementation (Third Edition), by

Bruce J. MacLennan, Chapter 1, and based on slides
by Istvan Jonyer.

1

2

Role of programming languages

• What is a programming language?
– Interface between user and machine

• Trade-off
– Ease of use - high level
– Efficiency - low level

– Formal Method
• Describe a solution to a problem
• Organize a solution to a problem
• Reason about a solution to a problem

2

3

Role of programming languages

• What is a programming language?
– A language that is intended for the

expression of computer programs and that
is capable of expressing any computer
program.

3

4

Readability

• Is machine code readable?
– 000000101011110011010101011110

• Assembly language?
– mov dx tmp
– add ax bx dx

• Is high-level code readable?
– http://www0.us.ioccc.org/years.html#2004

• http://www0.us.ioccc.org/2004/arachnid.c
• http://www0.us.ioccc.org/2004/anonymous.c

4

5

Pseudo-Code

• An instruction code that is different than
that provided by the machine

• Has an interpretive subroutine to
execute

• Implements a virtual computer
– Has own data types and operations

• (Can view all programming languages
this way)

5

6

Pseudo-Code Interpreters
• Is programming difficult?
• In the 1950ʼs, it was…

– E.g.: IBM 650
• No programming language was available (not

even assembler)
• Memory was only a few thousand words
• Stored program and data on rotating drum
• Instructions included address of next instruction

so that rotating drum was under next instruction
to execute and no full rotations were wasted

• Problem: What if address is already occupied?

6

http://www0.us.ioccc.org/years.html
http://www0.us.ioccc.org/2004/arachnid.c
http://www0.us.ioccc.org/2004/anonymous.c

9/14/20

2

7

Part of an IBM 650 program
LOC OP DATA INST COMMENTS

1107 46 1112 1061 Shall the loop box be used?

1061 30 0003 1019

1019 20 1023 1026 Store C.

1026 60 8003 1033
1033 30 0003 1041

1041 20 1045 1048 Store B.

1048 60 8003 1105

1105 30 0003 1063

1063 44 1067 1076 Is an 02-operation called for?
1076 10 1020 8003

8003 69 8002 1061 Go to an 01-subroutine.

7

8

Program DESIGN Notations
• Complexity led to development of program

design notations
– Memory layout
– Control flow

• Flow Diagrams (von Neumann & Goldstine)
• Later: Flowcharts

– Mnemonics
• To help remember instruction codes
• Like assembly language today

• These were designed to help the programmer,
not to be interpreted by computers

8

9

Floating Point Arithmetic
• Earliest built-in floating point processing:

IBM 704
• Before that, it had to be simulated

– Manual scaling
• Multiply by constant factor
• Use integer processor
• Manually scale back result
• Complicated and error-prone process

9

10

• IBM 650 and card
reader

http://www-03.ibm.com/ibm/history/exhibits/650/650_album.html

IBM 704 Operatorʼs Console
http://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH704C.html

10

11

Indexing
• Array is one of most common data structures
• Indexing

– “Adding a variable index quantity to a fixed address
in order to access the element of an array”

– Indexing was not supported by early computers
– They used address modification

• Alter the programʼs own data accessing instruction
• Compute actual address from pointer and offset, then write

into instructionʼs data address portion

– Very error prone process

11

12

Pseudo-Code Interpreters
• Subroutines were commonly used to perform

floating-point operations and indexing
• Consistent use of these simplified the

programming process
• This simulated instructions not provided by

the hardware
• Next logical step:

– Use instruction set not provided by the computer
– Pseudo-Code interpreter (a primitive, interpreted

programming language)

12

9/14/20

3

13

“Appendix D”
• Why not simplify programming by providing

an entire new instruction code that was
simpler to use than the machineʼs own.

• Wilkes, Wheeler and Gill (1951) describe a
pseudo-code and an “interpretive subroutine”
for executing it
– Buried in the now famous Appendix D of The

Preparation of Programs for an Electronic Digital
Computer

– They must have not realized the significance of
their work…

13

14

A Virtual Computer

• Pseudo-code interpreters implement
– A virtual computer
– New instruction set
– New data structures

• Virtual computer:
– Higher level than actual hardware

• Provides facilities more suitable to applications
• Abstracts away hardware details

14

15

Principles of Programming

• The Automation Principle
– Automate mechanical, tedious, or error

prone activities.
• The Regularity Principle

– Regular rules, without exceptions, are
easier to learn, use, describe, and
implement.

15

16

Design of a Pseudo-Code

• Remember: itʼs 1950!
• Capabilities we want

– Floating point operation support (+,-,*,/,…)
– Comparisons (=,≠,<,£,>,³)
– Indexing
– Transfer of control
– Input/output

16

17

Hardware Assumptions

• The IBM 650 will serve as the hardware
– 1 word: 10 decimal digits and 1 sign
– 2000 byte memory

• 1000 for data
• 1000 for program

http://www-03.ibm.com/ibm/history/exhibits/650/650_intro2.html

17

18

Principles of Programming

• Impossible error principle
– Making errors impossible to commit is

preferable to detecting them after their
commission.

– E.g.: Cannot modify the program
accidentally, since memory modifying
operations are for “data memory” only

18

9/14/20

4

Hardware

• 1 word: 10 decimal digits and 1 sign
• +/-
• How do we break them up?
• What do we need for instructions?
• How many operations do we need?
• How big is an address

19

19

20

Language Design

• 1 word can be enough to specify a 3-
operand instruction
– Operation: sign + 1 digit

• Supports 20 operations
– 3 3-digit operands

• Each accessing memory locations in data area
– Orthogonal design:

• Operations should be more intuitive than
machine code

• Use the sign to get more orthogonality

20

21

Principles of Programming

• Orthogonality principle
– Independent functions should be controlled

by independent mechanisms.

21

22

Specifics

• Instruction format:
– op src1 src2 dst
– E.g.: x+yàz : +1 010 150 200

• “Add values at location 010 and 150, and save
it to location 200”

– Orthogonal design: subtract should be ʻ-1ʼ

22

23

Arithmetic Operations

+ -

1 + -
2 * /
3 x2 square root

23

24

Comparisons

• Comparisons alter control flow
• if x < y then go to z
• First 2 operands are data locations, dst is

address of next instruction
• Do we need < and >?

24

9/14/20

5

25

Extended Instruction Table

+ -

1 + -
2 * /
3 x2 square root
4 = ≠
5 ³ <

25

26

What else do we need?

• Moving
• Could do “add 0” to an address, but that

could be inefficient
• Dedicate an operation to moving
• Second operand is not used
• “+0 src 000 dst”
• op src1 src2 dst
• E.g.: x+yàz : +1 010 150 200

• “Add values at location 010 and 150, and save it to location
200” suppose 150 contains 0

26

27

Indexing
• Need

– Base address
– Index

• Base and index take up 2 operands; what can we do
with 3rd?
– Save value of indexed element for other operations

• Index operations:
– Get: xiàz : +6 xxx iii zzz

– Put: xàyi : -6 xxx yyy iii

27

28

Looping

• Looping through the elements of an
array is frequently used

• Whatʼs needed?
– Iterator variable (array index i)
– Upper bound (n)
– Address of beginning of loop (d)
– “+7 iii nnn ddd”

28

29

Principles of Programming

• The abstraction principle
– Avoid requiring something to be stated

more than once; factor out the recurring
pattern.

29

30

Input/Output

• Program needs to read data from input
and write data to output
– Needs only a memory location to read from

or write to
– Read: “+8 000 000 dst”
– Print: “-8 000 000 src”

30

9/14/20

6

31

Complete Instruction Set

+ -
0 Move
1 + -
2 * /
3 x2 square root
4 = ≠
5 ³ <
6 GetArray PutArray
7 Incr. & test
8 Read Print
9 Stop

31

32

Program Structure

Initial data
values

Program
instructions

Input

data

+9999999999

+9999999999

32

33

Implementing the Interpreter

• How to implement the interpreter for our
pseudo-coded program?
– Model interpreter behavior after manual

execution
– Cheat: Implement using a high-level

language J
– We have to simulate the hardware in

software

33

34

Data Structures

• What data structures are needed to
simulate the IBM 650?
– Data memory
– Program memory
– Instruction pointer

34

35

Structure of the Interpreter
1. Read the next instruction
2. Decode the instruction
3. Execute the operation
4. Continue from step 1
Where do we update the instruction pointer
(IP)?
Reasonable choices: Step 1 or Step 4
What happens with a jump instruction?

35

Instruction Pointer
1. Read the next instruction
2. Decode the instruction
3. Execute the operation
4. Continue from step 1

Step 4? If there is a jump in Step 3….
Step 1 <- this is where

Increment at end of step 1; overwrite if
needed in step 3 for jumps

instruction := Program[IP];
IP := IP + 1;

36

36

9/14/20

7

37

Decoding Instructions

• Extract part of instruction
–dst = instruction mod 1000

• Select operation
– Big switch-statement (case-statement)

• Arithmetic operations
– Straight-forward

• Control-flow
– IP may also need to be altered

37

38

Labeling

• What if we need to insert an instruction?
– All addresses would have to be shifted, and the code

updated
• Solution:

– Use labels for loops, instead of absolute memory addresses
– Define label:

• -7 0LL 000 000

• Only 100 numeric labels are possible (00-99)
– Modify control flow instructions to jump to labels

38

39

Interpreting Labels

• How do we handle labels in the
interpreter?
– Look through all instructions from

beginning of program?
• Yes, but that is slow. This is how some

interpreters work. (BASIC, for instance)

– Create label table with absolute addresses
for labels and bind addresses

• Much faster. Compilers do it this way.

39

40

Principles of Programming

• Labeling principle
– Do not require users to know absolute

numbers or addresses. Instead associate
labels with number or addresses.

40

41

Data Labels?

• If we can jump to a label, we could use
labels for variables as well

• Construct symbol table
• This idea is easily extended to

instructions as well to form a symbolic
pseudo-code

41

42

Data Declaration
• We could extend the language to include

symbols not only for program instructions but
for data declarations as well

• In initial data values:
+0 sss nnn 000
±dddddddddd
– Declare n values of d referenced by symbol s
– Symbolic notation:
VAR sss nnn
±dddddddddd
– n=1 : simple variable
– n>1 : array

42

9/14/20

8

43

Debugging?

• Debugging always has to be done…
• Can facilitate debugging by printing

instructions executed in order
• Interpreter can include trace flag

if trace is enabled

print IP, instruction

43

44

Complete Symbolic Language

+ -
0 move MOVE
1 + ADD - SUB
2 * MULT / DIV
3 X2 SQR square root SQRT
4 = EQ ≠ NE
5 ³ GE < LT
6 GetArray GETA PutArray PUTA
7 Incr. & test LOOP Label LABL
8 input READ output PRNT
9 end STOP Trace TRAC

44

45

Complete Symbolic Language

• Additional symbols
– LABL nn

• Declare label n
– VAR sss nnn

• Declare variable s[n]
– END

• Delimiter between variables, program and input
• Defined as -9999999999

– TRAC
• Enable/disable tracing
• Tracing is turned off by default. Encountering this

operation toggles tracing.

45

46

Sample Program
VAR ZRO 1
+0000000000
VAR I 1
+0000000000
VAR SUM 1
+0000000000
...
END
READ N
LABL 20
READ TMP
GE TMP ZRO 40
SUB ZRO TMP TMP
LABL 40
PUTA TMP DTA I
LOOP I N 20
...
STOP
END
+0000000005
+0000000020
...

46

47

Principles of Programming

• Security principle
– No program that violates the definition of

the language, or its own intended structure,
should escape detection.

47

