
LETTERS

Robert L. Ashenhurst, editor acm forum

PCs and CPs View from Watergate Bridge

This letter is in response to the
February 1987 President’s Letter
in Communications (“Personal Com-
puters and Computing Profession-
als,” pp. 101-102). Right on and
write on, Paul Abrahams. Last
summer (1986) ACM-SIGGRAPH
awarded me an educational
resource grant to assist with the
creation of computer art work-
shops for high school and middle
school children. Since attending
SIGGRAPH ‘86, I have gone into
the classrooms of our children.
These young people know a great
deal about personal computers,
video technology, computer
music, . . the electronic world.
Their heroes, in some cases, are
the hackers and computer wizards
to whom Abrahams refers in his
letter. I have been able to reach
young people and have received
the support of Parent Teacher
Associations (PTAs) for my use of
personal computers in the creation
of computer art. SIGGRAPH Video
Reviews are exciting for children
to watch, but the opportunity to
see and do creative work on an
Apple II, Amiga or Macintosh goes
a long way in educating children.
As a result, it seems like a great
idea for ACM to find a place for
the hardware tinkers and software
wizards who have made such
a wonderful contribution to the
development of young people.

The Forum strives for balanced pres-

entation. One way to achieve this is
by soliciting responses to received
letters. Another is to publish all or a
representative sampling of subse-
quent reader responses to letters. The
former expedient was followed for the
letter from Herb Grosch, to which the
following response refers. The latter
expedient is adopted here, the “bal-
ance” being perhaps skewed by the
fact that this was the only response
received. The editor accepts full

responsibility for delaying its pub-
lication somewhat until it seemed
reasonably certain that no more
responses were forthcoming.
-R. L. Ashenhurst.

While reading Herb Grosch’s letter
in a recent ACM forum (“An ACM
Watergate,” Communications, Oct.
1986, p. 928-930) I was reminded
of an old Dutch expression that
my late father used for this sort of
situations: “Vechten tegen de bier-
kaai,” he used to say. It meant that
no matter how hard one fought
and argued and obtained agree-
ments, the thing would crop up
again and again. It was a fight
without an end. And that is what
the ACM has become.

Theresa-Marie Rhyne
Computer Artist/Art Educator
P.O. Box 3446
Stanford, California 94305

For those of us who have been
convinced of the necessity of
Chapters and have been fighting
for twenty years now for Chapter
Rights and to make life more bear-
able for the common programmer,
Herb is the only visible and audi-
ble voice left, it seems. Most of US

gave up after the Council elections
of 1982 and stopped paying dues.
I still pay my dues every year and
will for as long as Herb is on the
Council. Unless they kick me out
once this piece is published.

The publications boys in New
York have tricks up the kazoo in
order to protect their jabs. It has
happened to me and to others that
a piece is put “on hold” for publi-
cation until the establishment has
thought of enough smart answers
for publishing the piece with their
comments. But the original author
does not see their comments until
he reads them in Communications.
And if he then tries to get a rebut-
tal published, it is refused “be-
cause there is no sense in dragging
it out,” as I was once told after
inquiring. We now read that the
same thing again has befallen
Herb Grosch. It’s the secrecy that
gets ye! They only do what they
are legally obligated to and not
what is morally right. I know: that
is hard to prove, and they prob-
ably will scream of slander and
libel and threaten legal action
because their usual response is to
hide behind the law and the rules
of the Association. It’s the way
that the staff interprets figures and
doctors up reports, hold.ing the in-
teresting stuff close to their chests
and publishing good-to-them items
only.

Slowly it’s becoming impossible
to say anything or ask q.uestions
anymore. Over the years the staff
and the Council have become
sacred and we, the rank:-and-file
members, we are the sacred jack-

350 Communications of the ACM May 1987 Volume .?O Number 5

ACMForum

asses who have let them become Then we will have money for
that holy in the first place. Chapters and local activities.

It may be true that the total
number of members is at an all
time high, as Adele Goldberg
states. And as long as the sign-up
rate of new members is higher
that the drop-out rate of old mem-
bers, that number will continue to
rise. But the number is deceiving.
More than half the membership is
Associate and Student members
who have no vote in the ACM. We
advertise some 300 Chapters but
that number is also deceiving.
Some ZOO are Student Chapters,
and you know how it is at school:
if the professor says that it will
help your grade if you pay nine
dollars for ACM student member-
ship, especially “if you are a
borderline case” (“and you are all
borderline,” he adds!), then the
whole class joins the ACM. How-
ever, not many become full-
fledged ACM members after they
have received their diplomas. As
far as Regular Chapters go, per-
haps some 60 of them show some
degree of activity. The rest have
died since 1982 because the lead-
ers were burnt out by a lack of
administrative and financial sup-
port from the National organiza-
tion. Long-time members drop out
because of disappointment in the
ACM. Some months the number of
members who do not renew their
memberships is huge. That is what
Herb refers to when he speaks of
membership falling off. And that
was also the reason why they
were talking merger with the IEEE
there for a while.

Jan Matser
ACM Arrowhead Chapter Chair

(1967)
ACM San Francisco Peninsula

Chair (1977)

“ ‘GOT0 Considered Harmful’
Considered Harmful” Considered
Harmful?
I enjoyed Frank Rubin’s letter
(“‘GOT0 Considered Harmful’
Considered Harmful,” March 1987,
pp. 195-196), and welcome it as an
opportunity to get a discussion
started. As a software engineer, I
have found it interesting over the
last 10 years to write programs
both with and without GOT0
statements at key points. There
are cases where adding a GOT0 as
a quick exit from a deeply nested
structure is convenient, and there
are cases where revising to elimi-
nate the GOT0 actually simplifies
the program.

Rubin’s letter attempts to
“prove” that a GOT0 can simplify
the program, but instead proves
to me that his implementation
language is deficient. In the first
solution example the GOT0 pro-
grammers got the answer very
effectively with no wasted effort:

for i := 1 to n
do begin

for j := 1 to n do
if x[i, j] <> 0 then

got0 reject;
writeln ('the

first
To maintain an oversized office

in a high rent area costs hands full
of money. That is the main reason
why Chapter services have been
cut to practically nothing. In order
to get funds for Chapters and the
common programmer, I suggest
getting that office out of Manhat-
tan and moving it west. This will
accomplish two purposes: lower
rent, and half of the staff will quit.

all zero row is I, i);
break;

reject: end;

In the consolidated second ex-
ample, the GOTO-less version
seems somewhat more complex,
even after the subscript beyond
the end of the array is exchanged
for a binary flag to determine the
result:

i := 1;

repeat
j := 1;
while (j <= n) and
(x[i, j] = 0) do

j := j,+ 1;

i := i + 1;

until (i > n) or (j > n);
if j > n then

writeln('The first all
zero row is ', i);

Both programs, however, serve
to point out a missing feature of
the language. In the first, the auto-
matic incrementation of a counter
is used, but the end condition can-
not be tested with the loop con-
struct. In the second, the loop
construct tests for end condition,
but cannot then increment the
counter.

The ideal would be to take both
good ideas and use them in combi-
nation:

found := false;
for i := 1 to n while (A

found)
do for j := 1 to n

while (x[i, j] = 0)
do if j = n then

found := true;
if found then

writeln('The first all
zero row is I, i);

This is not a legal program in
Pascal, but the ability to use both
a counter and a condition in the
loop construct makes the entire
job much simpler. The loop count-
ing is done (correctly) by the loop-
ing construct, as is the exit testing.
I have included a flag to avoid de-
pending on the value of a loop in-
dex after exhausting the count,
which could be undefined. If a
language specifies the counter to
be left one past the end of range,
this flag would not be needed.

one who thinks there are no valid

I generally prefer GOTO-less
code, but will disagree with any-

May1987 Volume30 Number5 Communications ofthe ACM 351

ACMForum

uses for the GOT0 in practical en-
gineering. The GOT0 statement
can be easily misused and should
therefore be avoided. The hand-
coded counters in the second
example are also easily misused
and should be avoided whenever
possible.

The IF and GOT0 are a mini-
mum subset of control flow fea-
tures, to which the programmer
can return when the “correct” fea-
ture is not available. GOTO, hand
coded counters, and extra flags
should all be avoided when possi-
ble because their use is error
prone. I would like to challenge
language designers to make the
GOT0 useless by allowing its use
and then providing “better alter-
natives” for each situation where a
GOT0 is needed to work around a
language limitation.

Donald Moore
Prime Computer, Inc
292 Old Connecticut Path
Framingham, MA 01701

It was with a mixture of dismay
and exasperation that I read Frank
Rubin’s letter to the Forum. I was
dismayed to see this dead horse
beaten once again, and exasper-
ated by Rubin’s sweeping claims
about the virtues of the GOT0
statement.

This is primarily a religious
issue, and those of us who oppose
the GOT0 statement have little
hope of converting those who
insist on using it. To be sure, the
statement has its place in pro-
gramming, but, recalling Rubin’s
reference to butcher knives, it
should be used only with great
care. The fundamental problem is
that a programmer, when encoun-
tering a GOT0 in some fragment
of code, is forced to begin a se-
quential search of the entire pro-
gram to determine where the flow
of control has gone. Even in
Rubin’s simplistic example I had

352 Communications of the ACM

to read the code twice to find the
label he was jumping to.

Obviously, an occasional need
arises for some type of GOT0
statement. The solution is for the
programming language to provide
a GOT0 statement which has re-
stricted semantics, making it pos-
sible to easily determine the target
of the desired branch. For exam-
ple, here is Rubin’s example pro-
gram (determining the first all-
zero row of an N X N matrix of
integers), written in C:

for (i = 0; i < n; i+t) {
for (j = 0; j < n; jH-)

if (x[i, j] != 0)
break ;

if (j<n) (
printf(*'The first

all-zero row is
%d\n", i);

break ;

This fragment has two GOT0
statements, both named break.
[Note: Rubin’s program had the sec-
ond break but not the first-Ed.]
break has the effect of jumping
to the statement following the in-
nermost loop enclosing the break
statement. In both uses, the effect
of a GOT0 has been achieved, but
the restricted semantics of break
allow the programmer to easily
determine the destination of the
branch.

I contend that my version of
this program is far more under-
standable than either of Rubin’s
programs, with or without GOTO.
In fact, Mr. Rubin’s examples of
GOTO-less programming do more
to highlight a problem in Pascal
(which has no BREAK statement)
than they do to convince me that
a GOT0 statement is required. He
starts with an absolutely egregious
program, and “improves” it by re-
moving a flag. Here is my attempt
at a GOTO-less version of the
same program, in Pascal:

i := 1;

done := false;
while i <= n and not done

do
begin
j := 1;

while j <= n anti x[i, j]
= 0 do

j := j + 1;

if j <= n then
begin
writeln("The first

all-zero row is i);
done := true
end ;

i :=i+l
end ;

For lack of a BREAK Istatement,
I had to use a flag to terlminate the
outer while loop. Unlike Rubin, I
did not mix while and repeat
loops, which is confusing, nor did
I force the variable i to serve dual
roles, indexing the array and
pointing to the row following the
first all-zero row. While I prefer
my C version of this program, I
would still stand my Pascal
against any of Rubin’s attempts.

The conclusion to be drawn
from this exercise is that good
GOTO-less code can almost al-
ways be written to be better than
any equivalent code containing
GOTOs. Contrary to Mr. Rubin’s
claims, I (and many others) have
had many experiences trying to
debug and maintain someone
else’s code containing GOTOs, and
have yet to come away from such
an experience feeling good about
the individual who wrote the
original code.

Chuck Musciano
Lead Software Engineer
Harris Corporation
PO Box 37, MS 3A/19:12
Melbourne, FL 32902

My congratulations to Frank
Rubin for coming out of the closet
on “GOT0-less” programming. As
a professional programmer for
many years, I have read and lis-

May 1987 Volume SO Number5

ACM Forum

tened to all the arguments in favor
of GOTO-less programming, hop-
ing that one of them would con-
vince me to give up GOTOs. None
has so far succeeded. Such an ar-
gument would have to show that
GOTOs always violate the struc-
ture of a program even when they
are used in accordance with good
programming practices. Obviously
GOTOs are misused, but it is usu-
ally not much easier to untangle
heavily nested code than it is to
decipher spaghetti code.

Both the overuse and the total
elimination of GOTOs constitute
misunderstandings of the relation-
ship among syntactic elements in
a programming language. GOTOs
transfer control just like other,
related transfer commands (e.g.,
IF.. .THEN). Hence, they should
be used when other forms would
be inappropriate-by leading to
needlessly complex code, for in-
stance. A linguistic analogy can be
found in active and passive sen-
tences. Active sentences are easier
to produce and understand in
relation to their passive counter-
parts. A “passive-less” English
would certainly lead to simpler
(better?) structures. However,
most linguists would agree that
English would loose a portion of
its expressive power.

Finally, I will continue to do
what I have always been doing:
listening to GOTO-less arguments
and writing well-organized and
commented software that makes
appropriate use of all available
features of a programming language.

Michael J. Liebhaber
Child Language Program
University of Kansas
1043 lndiana
Lawrence, KS 66044

Frank Rubin’s letter stated that
I‘ . * * GOTO-less programs are
harder and costlier to create,
test, and modify.” He describes
Dijkstra’s original letter on the
subject (Communications, March

May 1987 Volume 30 Number 5

1968, pp. 147-148) as I‘. . . aca-
demic and unconvincing . . .”
without any support or justifica-
tion. Finally, he concludes with
some example programs which
purport to illustrate the logical
simplicity of programs which
freely use GOT0 plus BREAK con-
tructs.

Example programs are claimed
to fit the sample specification “Let
X be an N x N matrix of integers.
Write a program that will print the
first all-zero row of X, if any.” I
had to make several assumptions
in order to write the sample
program:

the language does not support
partial evaluation of logical
expressions,
performance of the final prod-
uct is not an issue, and
performance in the absence of
any all-zero row is not speci-
fied-in particular, termination
is not required.

Apparently, there are also sever-
al additional unstated assumptions:

1)

4

3)

4)

5)

the algorithm should test as
few elements of matrix X as
necessary,
the algorithm need not be eas-
ily changed to meet a different
specification,
the language does not support
recursion or multiple procedures,
the language does support both
GOT0 and BREAK, and
the program should terminate
if a non-all-zero row is found.

Rubin’s first example, of a pro-
gram “. . . where GOTOs signifi-
cantly reduce program complex-
ity,” will not run on my UCSD 1.1
Pascal system. My Pascal has no
BREAK statement. This, however,
can be circumvented by use of
an additional GOT0 and label as
follows:

writeln
('the first all zero

row is 1, i);

goto break
reject: end;
break: (*etc.*)

By violating all of the unstated
assumptions, I was able to produce
some relatively pleasant solutions
to this problem, none of which
caused me “to use extra flags, nest
statements excessively, or use gra-
tuitous subroutines.”

The first solution tests addi-
tional elements of the matrix X as
necessary, is easily changed to
meet a different specification, uses
multiple procedures, and does not
use either GOT0 or BREAK:

functionallZero:boolean;
var

az:boolean;
beginaz :=true;

for j := 1 tondo
az :=azAND (x[i, j] =

0);
allZero :=az

end;

procedurefirstZero;
begini :=l;

whilenotallZerodoi :=
i+ 1;

WRITELN('Firstal1 zero
row is 1, i)

end;

The second solution uses recur-
sion. With a minor change, the
recursive solution tests minimal
values of X. Many reject recursion
as a viable candidate, but recent
evidence [2] confirms that recur-
sion is indeed faster for many
classes of problems.

function allZero(i, j:
integer):

boolean;
begin

if j > n then
allZero := true

else
allZero := (x[i, j] =

0) and allZero(i,
j + 1)

end;

Communications of the ACM 353

ACM Forum

procedure firstZero(i:
integer);

begin
if i 5 n then

if allZero(i, 1) then
writeln(“First all

zero row is ', i)

else
firstZero(i + 1)

else
writeln(‘No all zero

row')
end ;

It seems that Rubin takes issue
with the complexity of deeply
nested control structures. Recent
work [3] sheds some light on ways
to cope with such problems. In
general, poor program layout re-
sults from a failure to understand
an algorithm, not from the lan-
guage or from the specific tech-
niques used for implementation.

I submit that there are two
issues here:

Poor and good programming are
language independent. That
Rubin is able to reduce the
complexity of poor programs is
not an indictment of the pro-
gramming style, but rather an
indictment of the program-
mer(s), and a tribute to Rubin’s
obvious skill.
Modifying programs in which
there is a ‘I. . . conceptual gap
between the static program and
the dynamic process . . .” (to
quote Dijkstra’s original letter)
is generally quite difficult.
While some advocate scrapping
programs instead of patching
them ([l] is a recent example),
it seems that writing a program
as generally as possible can
only make it less expensive to
modify.

In order to see the real limita-
tions of GOT0 programming, try
to modify the example programs
in Rubin’s letter. Modifications
should include:

1) locating all rows which are all
zero,

2) locating and computing an
arithmetic mean for all rows
which contain nonzero values,
and

3) locating all rows in which the
sum of the elements is odd.

Steven F. Loft
Computer Task Group
6700 Old Collanzer Road
Syracuse, NY 13057

REFERENCES
1. Hekmatpour, S. Experience with Evolution-

ary Prototyping in a Large Software Project.
Software Engineering Notes 12:l. 38-41.
January 1987.

2. Louden, K. Recursion Versus Non-Recur-
sion in Pascal: Recursion Can Be Faster.
SIGPLAN Notices 22:2. 62-67 February
1987.

3. Perkins, G. R.. R. W. Norman. S. Dancic.
Coping with Deeply Nested Control Struc-
tures. SIGPLAN Notices 22:2. 68-77
February 1987.

I would like to comment on Frank
Rubin’s article on GOTOs. Al-
though I agree with him in spirit,
unfortunately he did not give a
fair shake to the non-GOT0 camp
for a correct solution. The problem
is to find the first row of all zeroes
in an n x n matrix if such a row
exists. A simple correct solution
can be derived from the English
description of the problem/solu-
tion. First, a practical definition of
an algorithm can be given as:

1)

2)

if the current matrix element is
equal to zero then look at the
next element in the row;
if the current matrix element is
not equal to zero then look at
the first element in the next
row;

But WHOOPS, . . .

3) if the column number is equal
to n + 1, then we have found a
row with all zeroes, so write
out that row number;

4) if the row number is equal to
n + 1, then we have run out of
rows and there are no rows in
matrix X that is full of zeroes.

An English-definition of a pro-
cedure that accomplishes the
above is

FIND(X, n, r, c) =
Returns the row number of

the first row of an n by n matrix X
that has all zeroes if such a row
exists, or the value of n + 1 if the
row does not exist. It also

Assumes that all rows whose
index is less than r have at least
one non-zero element, and that
row r has zeroes as all of its ele-
ments from 1 to c - 1.

[Assumes (V r’) if r’ c r then
X[r’][l. .n] # 5) and X[r][l. .c - 11
= 0, and gives the first r" where r”
2 r, X[r”][l. .n] = 0, else it gives
the value of n + 11.

Thus, the Lisp-like, tail-
recursive definition of “Given
an n x n matrix X, print out the
row number of the first row with
all zeroes if there exists such a
row”, is:

FIND(X, n, r, c) = [[[
c=n+l+r. (fro-m clause 3)
r=n+l-+r. {from clause 4)

X[r, c] = 0 + FIND(X, n, r, c + 1).
(from clause 1)

X[r, c] # 0 + FIND(X, yz, r + 1, 1).

111
(from clause 2)

This definition FIND would be run
as “FIND(X, n, 1, 1)” with n al-
ready instantiated as some integer.
From the definition of FIND, it is
easy to write the following pro-
gram:

r := 1;

c := 1;

while (c<>n + 1) and
(r<>n + 1) do

if X[r, c] = 0 then
C := c + 1

else
begin
r := r+ 1;

c := 1

end ;
if r<>n + then

writelin('Found the
first row with all

zeroes, it is :I, r);

354 Communications of the ACM May 1987 Volume 30 Number 5

ACM Forum

This program was written by put-
ting the recursive clauses in order
in a “if. . . then . . . else if. . .
etc . . . ,‘I and by putting the escape
clauses into the while clause pred-
icate location. Since there were
two escape clauses, we have to
differentiate as to which one ter-
minated the while loop. We do
this by using an if statement after
the loop.

The loop invariant for the while
is:

There exists no row previous to
r that is all zeroes, and of row r, its
elements from 1 to c - 1 are all
zeroes.

(i(Elr')(r' < Y, X[r'][l. .n] = 5))

and X[Y][l. .c - l] = 0.

The condition that will be true at
termination of the while, after 0
or more iterations is:

We ran out of rows and there
was no row of all zeroes, or, the
current row r is all zeroes and all
the previous rows had at least one
nonzero element each.

(r=n+l and

(i(3r’)(r’ 5 n, X[r’][l. .n] = 0)))

TO OUR MEMBERS:
More than 15,000 members
took advantage of the special
multiple-year renewal offer in
November and December 1986.

As a result of this enthusiastic
response, for which we were not
fully prepared, processing of nor-
mal membership renewals was
delayed, and some members
who renewed through the spe-
cial offer received incorrect sec-

or (X[Y][l. A] = 0 and

(i@r’)(r < Y, X[r’][l. .n] = 0))).

-which is nothing more than a
conjunction of the loop invariant
with the negation of the while
loop guard. (This paragraph may
be clouding the point).

Now I would like to criticize
Rubin’s example programs. In the
third program in his letter, in
which he eliminated the flag, one
can tell that the program was writ-
ten and then hodged-podged into
being hopefully correct. This is
shown by the “i := i + 1;” state-
ment. If a row was all zeroes, then
why increment i? Because it is
necessary to make the program
work.

Thus, all the statements are not
fully (correctly) utilized, and an
unnecessary loop construct seems
to be an unwarranted complica-
tion

In the first program (the “pre-
ferred” GOT0 program) the “for
j := 1 to n do” behavior is not con-
sistent with the commonly under-
stood definition of the FOR loop.
A FOR loop specifies a definite
number of iterations. Depending
on the data of row i, the FOR j
loop may do its body for n itera-
tions, or it may do it for less. The

ond notices. If you received such
a notice, we wish to assure you
that your payments have been
applied properly and your publi-
cations will arrive on schedule.

In addition, membership cards
were not sent with the multiple-
year renewal offer because of
the nature of that offer. For
those of you who responded to
the offer, new membership cards

construct used in that program is a
quasi-FOR definition where it is
somewhat like a FOR definition
except. . . . So you have a GOT0
which can prematurely break you
out of the “FOR j := 1 to n do”
loop, and a BREAK that can break
you prematurely out of the “for
i := 1 to n” loop. These two quasi-
loops make the program error
prone and make proving program
correctness harder.

In conclusion, although the
derivation of my program may
appear contrived, I did derive a
similar program in less than five
minutes intuitively, except that
the guards for the while loop were
not as good as those in the pre-
sented version. Then I thought of
how to systematically derive a
correct solution from the problem,
and thus, the letter.

Incidentally, there are intuitive
ways to write non-GOT0 pro-
grams that will run as efficiently
as Rubin’s GOT0 program (or bet-
ter). One involves a different data-
structure, which would be an
n + 1 by n + 1 matrix containing
sentinels in the extra row and
column.

Lee Starr
10 Overlook Terrace
Walden, NY 12586

are being prepared and will be
sent as soon as possible.

We apologize for any incon-
venience that these processing
problems may have caused you,
and urge you to contact the
ACM Member Services Depart-
ment at ACM Headquarters if
you have any remaining unre-
solved problems with your
membership.

May 1987 Volume 30 Number 5 Communications of the ACM 355

