
A Case for the GOT O

Martin E . Hopkins, I13M

In recent years there has been much controversy ove r

the use of the goto statement . This paper, whil e

acknowledging that goto has been used too often ,

presents the case for its retention in current an d

future programming languages .

KEY WORDS AND PHRASES : goto, block structur e

languages, programming styl e

CR CATEGORIES : 4 .2 2

INTRODUCTION

It is with some trepidation that I undertake t o

defend the goto statement, a construct, which whil e

ancient and much used has been shown to be theoret-
ically unnecessary (2) and in recent years has come

under so much attack (3) . In my opinion, ther e

have been far too many goto statements in mos t
programs, but to say this is not to say that goto

should be eliminated from our programming languages .

This paper contains a plea for the retention o f

goto in both current and future languages . Le t

us first examine the context in which the contro-

versy occurs .

A wise philosopher once pointed out to a

lazy king that there is no royal road to geometry .
After discovering, in the late fifties, that pro-

gramming was the computer problem, a search was

made during the sixties for the royal road t o

programming . Various paths were tried includin g

comprehensive operating systems, higher leve l

languages, project management techniques, tim e

sharing, virtual memory, programmer education ,

and applications packages . While each of these

is useful, they have not solved the programmin g

problem . Confronted with this unresolved

problem and with few good ideas on the horizon ,

some people are now hoping that the royal roa d

will be found through style, and that banishmen t

of the

	

to statement will solve all . The

existence of this controversy and the seriousnes s

assigned to it by otherwise very sensible peopl e

are symptoms of a malaise in the computing com-

munity . We have few promising new ideas at hand .

I also suspect that the controversy reflects some -

thing rather deep in human nature, the notion tha t

language is magic and the mere utterance of certai n

words is dangerous or defiling . Is it an accident

that "goto " has four letters ?
Having indicated my belief that this contro-

versy is not quite as momentous as some have mad e

out, it is appropriate to point out some beneficia l

aspects . First, interest has been focused on

programming style and while style is not everythin g

it does have a great deal of importance . Second ,
the popularity of the no goto rule is, in larg e
part, due to the fact that it is a simple rule whic h

does improve the code produced by most programmers .

As we shall see, this is not sufficient grounds

for banishing the construct from our languages ,
although it may well justify teaching alternative

methods of programming to beginners or restrictin g
its use on a project . Perhaps the most beneficial
aspect of the controversy will be to encourage th e

use of block structure languages and to discourag e
use of our most popular languages, COBOL and FORTRA N

as they are not well suited to programming withou t
the goto .

The principal motivation behind eliminatin g

the goto statement is the hope that the resultin g

programs will not look like a bowl of spaghetti .
Instead they will be simple, elegant and easy t o

read, both for the programmer who is engaged i n

composition and checkout as well as the poor sou l

attempting future modification . By avoiding got o

one guarantees that a program will consist entirel y
of one-in-one-out control structures . It is eas y

to read a properly indented program without

	

t o
statements, which is written in a block structur e

language . The possible predecessors of every state-

ment are obvious and, with the exception of loops ,
all predecessors are higher on the page . (I assume
nobody writes inner procedures longer than a pag e

anymore?) Why then should we retain the goto state-

ment in our current and future programming languages ?

THEORETICAL CONSIDERATION S

It has been demonstrated that there are flo w

charts which cannot be converted to a procedura l

notation without .goto statements [1,4] . It turns

out though that this result is not really an argu-
ment for the retention of goto as there are mean s

by which a procedure can be rewritten in a system-
atic manner to eliminate all instances of goto . An
almost trivial method is to introduce a new variabl e

which can be thought of as the instruction counte r
along with tests and sets of this counter . The

method is fully described by Bohm and Jacopini [2] .

The results of this procedure when applied to a

large program with many instances of goto would
usually be a program which is less readable tha n

the original program with goto statements . However ,
nobody seems to be advocating using such unconsidere d

methods .
The real issue is that theoretical work has

59



suggested a number of techniques that can be used

to rewrite programs, eliminating the instances o f

goto . These include replication of code (nod e

splitting), the introduction of new variables an d
tests as well as the introduction of procedures .

Any of these techniques, when used with discretion ,
can increase the readability of code . The questio n
is whether there are any instances when the appli-

cation of such methods decreases clarity or produce s
some other undesirable effect . Whether or not t o

retain the goto does not seem to be a theoretica l

issue . It is rather a matter of taste, style an d
the nractical considerations of day to day compute r

use .

ALTERNATIVES TO GOTO

With respect to current languages which are i n

wide use such as COBOL and FORTRAN, there is th e

practical consideration that the goto statement i s

necessary . Even where a language is reasonably wel l

suited to programming without the goto, the elimi-
nation of this construct may be at once too loos e

and too restrictive . PL/I provides some interestin g

examples here . One exits from an Algol procedur e
when the flow of control reaches the end bracket .

PL/I provides an additional mechanism, an explici t
RETURN statement . Consider the table look up i n

Fig . 1 which is similar to an example of Floyd an d

Knuth (4) . The problem is to find an instance o f

X in the vector A and if there is no instance o f
X in A, then make a new entry in A of the argu-

ment X . In either case the index of the entry is

returned . A count of the number of matches associate d

with each entry in A is also maintained in an asso-
ciated vector, B . In this example there are n o

goto statements but the two RETURN statements cause

an exit from both the procedure and the iterative

DO . Thus the procedure has control structures which

have more than one exit and one-in-one-out contro l

structures were a principal reason for avoidin g
goto . Should the PL/I programmer add a rule for -

bidding RETURN? The procedure could then be re -

written as in Fig . 2 . This involves the intro-
duction of a new variable, SWITCH, and a new test .
If one assumes that the introduction of gratuitous

identifiers and tests is undesirable perhaps RETURN

is a desirable construct even though it can resul t

in multiple exit control structures . It is my

feeling that procedures with several RETURN state-
ments are easy to read and modify because the y

follow the top to bottom pattern and maintain the
obvious predecessor characteristic, while avoidin g

the introduction of new variables . RETURN is there -

fore preferable to the alternative of introducing

new variables and tests .

However, RETURN is a very specialized state-
ment . It only permits an exit from one level o f

one type of control, the procedure . One could

generalize the construct to apply to multipl e

levels of control and to DO groups or BEGI N
blocks as well as procedures . This is exactl y

the flavor of the Bliss leave (6) construct .
Lacking such language, the PL/I user must conten t

himself with goto . But is this a bad thing? Th e

good programmer, who understands the potential com -
plexity which results from excessive use of goto ,

will attempt to recast such an algorithm . Failing
to find an elegant restatement, he will insert th e

label and its associated goto out of the desire d

control structure . The label stands there as a

warning to the reader of the routine that this i s

a procedure with more than the usual complexity .
Note also that the label point catches the eye . I t
is immediately apparent when looking at this state-

ment that it has an unusual predecessor . The care-
ful reader will want to consult a cross referenc e
listing to determine the potential flow of control .

Note that the BLISS leave construct is somewha t
less than ideal here . In BLISS when one examine s
the code which follows a bracket terminating a leve l

of control, its potential predecessors are not im-
mediately apparent . One must look upward on the
page for its associated label, which indicates a
potential unusual predecessor and then find th e
leave . It is my feeling that unusual exits fro m

levels of control should be avoided . The multipl e
level case is especially ugly . Where such construct s
are necessary, it should be made com p letely obvious

to all . Statements such as the Bliss leave encour-

age unusual exits from multiple levels of control .
One should not cover up the fact that there is an
awkward bit of logic by the introduction of a new
control construct .

Another interesting PL/I control construct i s
the ON unit . This is a named block which is auto-

matically invoked on certain events such as overflow ,

but it can also be invoked explicitly by a statemen t
of the form :

SIGNAL

	

CONDITION (name) ;
The name is established dynamically and need not b e

	

declared in the scope of the SIGNAL .

	

This facility
often eliminates the need to pass special erro r
return parameters or test a return code which indi-

cates abnormal termination of a lower level proce-
dure . , After completion of an ON unit activated b y
SIGNAL, control is passed back to the statemen t

following the SIGNAL . This is usually not useful .
One wants to terminate the signaling block and th e
only way to do this in PL/I is with a goto out of

the ON unit . Is SIGNAL permissible under the n o
goto criteria? Elimination of goto seems too
restrictive here as SIGNAL is a useful facilit y

which can eliminate much messy programming detail .
However, the natural consequence of using the SIGNA L

statement is to terminate an ON unit with a gpto .
Perhaps it is best to admit that there is no very
good alternative to a goto statement in this situa-

tion .

GOTO AS A BASIC BUILDING BLOCK

The lack of a case statement in PL/I is a clea r

deficiency . The resourceful programmer will construc t
one out of a goto . This does not make up for th e
lack of a case statement, but it does point up an

interesting and highly legitimate use of goto . One
can use it as a primitive to construct more advance d
and elegant control structures . Imaginative program-

mers will, from time to time, develop new control
constructs as Hoare invented the case statement (5) .

Those that are worthwhile will be informally define d

and implemented with a macro preprocessor . The bette r
ones will appear in experimental compilers an d
eventually the best will find their way into th e

standard languages . Such inventions are often very
hard to implement with macro preprocessors for

existing languages without use of the goto construct .
There is still room for the incorporation of unusua l
control mechanisms into existing block structur e

languages . Decision tables are a prime example .
One way of handling decision tables is to have a

60



preprocessor convert them to source language state-

ments . If a convenient translation process intro-
duces goto statements, this is not important as th e
basic documentation is at the decision table level .
The source language is treated as an internal lan-

guage . The ease of translation is more importan t
than the introduction of goto statements .

Another related reason for retaining goto even
in_our.newest languages is that it is often possibl e
to use a language as the target to which one trans -

lates a secondary source language . If the secondar y
language has goto or even a different set of contro l

constructs, then translation could be very difficul t

without a goto in the target language . In other
words source languages and their associated com-

pilers are useful building blocks for the developmen t

of special constructs or languages and eliminatio n
of 1goto decreases the range of usefulness of a

language .

GOTO AS AN ESCAP E

Part of the reason for retaining goto is that th e

the world is not always a very elegant place an d
sometimes a goto is a useful, if ugly, tool to handl e

an awkward situation . Algorithms are often messy .
Sometimes this may be due to inherent complexity .
I suspect, however, that most of the time it i s

because not enough time or intelligence has bee n

applied . Where time or intelligence are lacking ,

a goto may do the job . Every program will not b e

published . Many may be used only once, I tend t o
sympathize with the programmer who fixes up a on e

time program at 3 :00 a .m . with a goto . Of course ,
there is always the danger that the programmer wil l

lapse into bad habits but I am willing to take tha t
chance . Perhaps it is an opportunity, for whe n
the intelligent supervisor reads the code of thos e

under him, he can focus on any goto statements .
A programmer should be able to justify each us e

of goto .
I have avoided discussing performance, which

like death and taxes, none of us can avoid forever .

Suppose a procedure runs too slowly or takes u p

too much space . A rewrite of the procedure o r
restructuring of the data may be in order . But

if that fails one may be driven to a rewrite i n
assembly language . There is an intermediat e
alternative which may solve the problem withou t

resort to an assembler . The programmer who
writes structured programs uses certain technique s

such as the introduction of procedures and the

repetition of code which can result in the los s

of time and space . Given the idiosyncracie s

of many compilers, a little reorganization o f

code and a few goto statements inserted by a

clever programmer can often improve performance .

This is not a practice which I recommend fo r

those starting a project, even where it i s
known to have stringent performance require-

ments . One should give up a structured progra m
in a higher level language only after performanc e

bottlenecks have been clearly identified and the n
only give up what is absolutely necessary . My
guess is that very few such situations will exis t

but when they do, a slightly contorted procedur e
in a higher level language may be an attractiv e

alternative to one written in assembly language .

The villain here is the compiler which produces ba d

code in some situations . Would elimination (a s

opposed to avoidance) of goto significantly ease

the task of compiler writers and thus help us to

get better object code? It is difficult to do
justice to this problem as there are so man y
different compiling techniques and some would b e
helped and some would not . My feeling is that elim-
ination of the goto would not dramatically ease th e
problems of compiler writers . Even in compiler s

which do extensive control flow analysis, a smal l
percentage of implementation effort is devoted t o
that task . A more interesting subject for compile r
writers is the identification of those o p timizations
which improve the performance of programs written
with none or very few goto statements . Viewed i n
this light the existence of well structured program s
imposes an additional obligation and more work o n
compiler writers . This is work which they shoul d
eagerly accept so that programmers will not hav e
to make the trade off between a well structure d
program and one that performs well . More work i s
required in this area .

VARIETIES OF PROGRAMMING STYLE

The goto issue is Dart of the larger topic o f
overall programming style . One of my worries i s
that we will become the prisoners of one currentl y
fashionable " classical " style . Perhaps other rule s
of style are better . For example we might say tha t
only a goto which was directed forward was elegant .
Perhaps it is useful to restrict ourselves t o
standard type labels such as "PROC EXIT" . Vagarie s
of style or fashion need not disturb students wh o
should be taught in a rather constrained way welc h

is established by the teacher . Also, those workin g
on large projects will have to conform to standards .
However-¢ exeerienced .programmers and languag e
designers of taste and imagination will want t o
experiment and they should be encouraged to do so .
API. p rovides an interesting example of a divers e
style . A computed goto, in the fora of a righ t

pointing arrow exists in API., but other than functio n
invocation there are no control constructs such a s
IF THEY ELSE or an iteration statement . Surpri-

singly one does not get a maze of goto statement s
in a well written APL function, for the powerfu l
array operators can be used in situations wher e
loops occur in other languages . Sequential execu-
tion of statements thus becomes the general rul e
and few right pointing arrows are required . Whethe r

an algorithm written in APL is clearer than th e

same algorithm written in a block structure language
seems to be a matter on which intelligent people o f

taste will disagree .
Elegance in programming involves more tha n

avoiding goto, and beyond the goto controversy ther e
are a great many other important issues of style .
There is the question about the clarity of arra y
operations in APL and PL/l, as well as structur e
operations in COBOL and PL/I . to what extent are
implicit conversions a subsumpti .on of extreneou s

detail and in what instances do they produce sur-
prising results? There are many questions abou t
optimal size and complexity with respect to expres-

sions, nesting of IF and iteration statements a s
well as the size and complexity of procedures . To

what extent do declarations properly subsume detail .
and to what extent do they leave the meaning cf a
statement unclear unless one is simultaneousl y

examining the declaration? Under what circumstances ,
if any, should functions have side effects or shoul d

iteration replace recursion? To what extent can w e
eliminate assignment? These and other question s
are subtle but important stylistic problems whic h

61



LOOK UP2 :

PROC (X) ;

SWITCH = 1 ;

DO I = 1 TO ATOP WHILE (SWITCH = 1) ;

IF A(I) = X THE N

SWITCH = 0 ;

we are likely to pass over if we concentrate to o
heavily on the relatively simple and unimportan t

issue of goto .

CONCLUSION .

goto should be retained in both current and futur e
future languages because it is useful in a limite d

number of situations . Programmers should work har d
to produce well structured programs with one-in-
one-out control structures which have no got o
statements .

	

Where this is not possible, we shoul d
not think that elegance is achieved with a magi c

language formula . It is far better to admit th e
awkwardness and use the goto . Furthermore, goto

is a useful means to synthesize more complex contro l

structures and increases the usefulness of a languag e
as a target to which other languages can be trans-

lated . Viewed in the light of practical program-
ming as an ultimate escape, goto can also be jus-

tified if not encouraged . Finally our wisdom ha s
not yet reached the point where future language s
should eliminate the goto . If future work indicate s

that by avoiding

	

to we can gain some importan t
advantage such as routine proofs that programs ar e

correct, then the decision to retain the goto con-
struct should be reconsidered . But until then, i t

is wise to retain it .

LOOKUP :

END ;

RETURN(I) ;

PROC (X) ;

DO

	

I = 1

	

TO ATOP ;

END ;

Figure 2

IF

	

A(I) = X

	

THEN
REFERENCE S

DO :

B(I)

	

= B(I)

	

+ 1 ;

[1.] Ashcroft, E .

	

and Manna, Z .,

	

"The Translation

of

	

' go to '

	

Programs

	

to

	

' while '

	

Programs " ,

Proc .

	

IFIP Congress

	

71,

	

Ljubljana, August 197 1

RETURN

	

(I) ;

END ;

[2] Bohm,

	

Corrado and Jacopini, G .,

	

"Flow Diagrams ,

Turing Machines, and Languages with only Tw o

Formation Rules " ,

	

CACM 9

	

(Aug .

	

1966)

END ;

[3] Dijkstra,

	

E .W .,

	

"GO TO Statement Considere d

Harmful " ,

	

letter to the editor,

	

CACM 11,

	

3
(March 1968 )

A(I)

	

= X ;

B(I)

	

=

	

1 ;

[4] Knuth,

	

D .

	

E .

	

and Floyd,

	

R . W .,

	

"Notes

	

o n
Avoiding

	

' GO TO'

	

Statements " ,

	

Information
Processing Letters

	

(1971)

	

23-31 North-Hollan d

Publishing Co .

ATOP = ATOP + 1 ; [5] Wirth, Niklaus

	

and Hoare,

	

C .

	

A .

	

R .,

	

" A Contri -
bution to the Development of Algol " , CACM 9 ,

RETURN

	

(I) ; 6

	

(June 1966 )
[6] Wulf,

	

W .

	

A .,

	

Russell,

	

D .

	

B .,

	

and Habermann,

	

A .

END ; N .,

	

" Bliss :

	

A Language for Systems Program -

min g " , CACM 14, 12 (December 1971 )

Figure 1

END ;

IF SWITCH = 0 THE N

B(I) = B(I) + 1 ;

ELSE

DO ;

A(I) = X ;

B(I) = 1 ;

ATOP = A TOP + 1 ;

6 2


