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------------------------------------
Day One: Wed, Aug 24, 2016
------------------------------------
* Take Roll
* Tell students that they are required to carefully read the entire course 

description on line 
    (or request a printed full copy if not able to read on  line)

* Go over items in course description
+ Name
+ Office & Hours
+ E-mail
+ Homepage + Class web site

* Go over Course Objectives - what do folks think those objectives mean?
* Text

+ Problems getting one?
+ How many will be using Ed #4? How many using Ed #3?
+ Do students know about the book web site - go and check out the errata 
and review materials with the class

* Course components
+ HW (25%)
+ 2 or more quizzes (50%)
+ comprehensive final exam (25%)
Exception:  You fail the course if you get a failing average on tests.  
Otherwise I use the weights above. 

HOMEWORK
Look at the Assignments with Class -- First Assignment is TODAY

Make sure to be familiar with homework submission rules in the course 
description -- notice strict late policy -- anybody here not able to 
access the course description, ask me for a paper copy.

Schedule - look at the schedule with the class and go over this week's 
assignments -- There is reading and homework.  The first HW is due next 
Wednesday.

Lecture
Chapter One - Chapter One is about language we use to make it easier to talk 

about mathematical concepts, and to make it easier to find solutions to 
math problems.

Section 1.1 - Variables
Section 1.2 - The Language of Sets
Section 1.3 - The Language of Relations and Functions

Section 1.1 - Variables are names we use for numbers or other things.  

Page �1



Math 2300, Section #1; 14:00-14:50 MWR P-102; Daily Notes  Fall, 2016 

Example: (x)
We can use a variable as a names of a specific numbers that we don't know.

Example: x = 23981 times 53204

When we want to state a fact that is true about a lot of numbers, we can use 
a variable as a name that represents any one of those numbers.

Example: 2(y + 1) - y = y + 2

If we are wondering if a number with a certain property exists, we can use a 
variable to represent the number, to help us find the number, or to prove 
it does NOT exist.

Example: Can 6 be the sum of a number and its square?
With variable:  x^2 + x = 6.  Using quadratic formula, we find that 2 and -3 

work.

It's handy to use variables as names for numbers if we write some 
mathematical information that is long.  We can use a variable name to 
refer to something over and over again in different parts of what we 
write.  The reader understands what we mean, because we use the variable 
name consistently. 

People often use variables to make mathematical statements
Universal: All real numbers y have the property that 2(y + 1) - y = y + 2
Conditional: If x=2 or x=-3 then x^2 + x = 6
Existential: There are two numbers x,y such that x^2 = 25, and y^2 = 25.

------------------------------------
Day Two: Thurs, Aug 25, 2016
------------------------------------

* Take Roll
* Take care of remaining problems with adding the class
*  Today's HW assignment is problems for section 1.2 on page 13: 2,4,7,9,12; 

Due on Thursday, September 1.
* Wednesday's assignment is 1.1 problems on page 5, 2,4,7,11,13; due 

Wednesday, Aug 31.
*  The goal today is to come close to finishing discussion of chapter one.

Ask students for questions about the assigned HW.

Work problems with the class: 1.1.3, 1.1.10

Section 1.2 - The Language of sets

Sets are basically just collections of things - kind of like a basket, 
containing some things, or maybe empty.

The things that are in the set are called elements of the set.

Page �2



Math 2300, Section #1; 14:00-14:50 MWR P-102; Daily Notes  Fall, 2016 

If S is a set and x is an element of S, we use the notation x ∊ S to denote 
that.

We can indicate the elements of a set by using "roster" notation with or 
without ellipsis:

S={a, t, r} ; 
T= {1, 2, ..., 14}; 
V = {31.2, 41.2, 51.2, ... }

When you use ellipsis you need to be sure that the people who read your 
writings will understand what you mean by the ellipsis.  That's why 
something is written in the beginning to establish the pattern.

The idea of a set does not include any notion of the order of the elements.  
S={1,2,3}; T={2,1,3}; and U={2,3,1} are all the same set, because the 

elements are the same.

Also, an element is either in the set or not.  An element can't be in a set 
twice.

For example {1,2,2} = {1,2}

Familiar sets R, Z, Q, R+, Z-, etc

R and Z illustrate the difference between the idea of continuous and discrete 
mathematics

Tell students to work as many HW problems as possible between now and Monday, 
and come in with their questions about how to work them.

             
Show class some example of "set builder" notation - say using inequality 

conditions

There's roster notation to specify a set - like S = {-1, 0, 1, 2, 3}.
You can also use "SET BUILDER" notation to specify a set:

For example the set S above is also described as  

S = { n ∊ Z | -1 ≤ n ≤ 3 }

It's the same set - You read the notation this way:

"The set of all n in Z (integers) such that n is between -1 and 3 
(inclusive).

The set builder notation is generally more expressive than the roster 
notation.  In other words, it's often easier to say what you mean using 
the set builder notation.  For example:
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C1 = { m ∊ Z | m = pq, where p and q are primes}

Imagine trying to use roster notation to specify the set C1.

Notions of subset, proper subset, equal sets, difference between being a 
subset and being an element.

Subset: if A and B are sets, then 
A ⊆ B means that every element of A is also an element of B

Example: 
{2, 3, 1} ⊆ {-20, 2.3, 1, 3, 2, 4}
Example: Z ⊆ R
Example: {1,2} ⊆ {1,2}

Proper Subset: if A is a subset of B, and if there is at least one element of 
B that is NOT in A, then A is a proper subset of B.

Example of Proper Subset Relation: {2, 3, 1} ⊆ {-20, 2.3, 1, 3, 2, 4}
Example of Proper Subset Relation: 
Z ⊆ R

Equality of Sets:  If A and B are sets such that A ⊆ B AND B ⊆ A, then A and 
B are equal sets.  In that case every element of A is an element of B, and 
every element of B is an element of A.

Example: 
{7, 7, 2, 3, 1} = {1, 1, 2, 3, 7}

Difference between being an element and being a subset.
⊆  and ∊ mean completely different things.
For example {2, 5} ⊆ {5, 2, 4} but {2, 5} is not an element of 
{5, 2, 4}.  The only elements of 
{5, 2, 4} are integers, and {2, 5} is not an integer.
Another example: a singleton set is not the same as its element:  4 and {4} 

are not the same thing.  
4 ∊ {4}, but neither is a subset of the other.
The empty set is the set with no elements.  ∅

The empty set is a subset of every set.  This fact is "vacuously" true.
If S is a set, then  ∅ ⊆ S is true.  Every element of ∅ is an element of S.
That's a vacuously true statement, because the empty set has no elements. 

A slightly different way of looking at this: If ∅ is NOT a subset of every 
set, then there must be some set K such that ∅ is NOT a subset of K.  For 
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THAT to be true, there must be an element of ∅ that is not an element of 
K.  But since there are NO elements of ∅, there isn't one that's not in K.

Idea of Cartesian product, how to express ordered pairs as sets, and as 
"tuples"

Named after mathematician Rene Descartes, the Cartesian product of a set A 
and a set B is 

A x B = { (a,b) | a ∊ A and b ∊ B }

(a,b) is called an ordered pair.  It is not the same as the set {a,b} because 
the it has a first element a, and a second element b.  So although 

{a,b} = {b,a}, 

it is not the case in general that (a,b) = (b,a).  (a,b) = (b,a) only when a 
= b.

When mathematicians need to be very precise about what they mean by an 
ordered pair, they can use set notation, and this definition:

(a,b) is defined as { {a}, {a,b} } 

When a ≠ b, a is distinguished as the 'first' element of the ordered pair by 
the fact that it is in both of these sets: {a}  {a,b}.

(a,b) = (c,d) iff a=c and b=d.

------------------------------------
Day Three: Mon, Aug 29, 2016
------------------------------------
* Take Roll

Note: We kind of started here on Monday, but I had not lectured about some of 
the latter set-related definitions above yet, so I used the time working 
on the problems to introduce (most of) the remaining concepts.

Work problems with the class: 
1.2.3: 
a. Is 4 = {4}?
b. How many elements are in the set {3,4,3,5}?
c. How many elements are in the set
   {1, {1}, {1, {1}}}?

1.2.5
Which of the following sets are equal
A={0,1,2}
B={x∈R|-1≤x<3}
C={x∈R|-1<x<3}
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D={x∈Z|-1<x<3}
E={x∈Z+|-1<x<3}

1.2.8: 
A = {c, d, f, g}
B = {f, j}
C = {d, g}
Answer each question, give reasons.
a. Is B ⊆ A?
b. Is C ⊆ A?
c. Is C ⊆ C?
d. Is C a proper subset of A?

1.2.10:
a. Is ((-2)2, -22) = (-22, (-2)2)?
b. Is (5,-5)=(-5,5)?
c. Is (8-9,(-1)1/3) = (-1,-1)?
d. Is (-2/(-4), (-2)3) = (3/6, -8)?

1.2.11: 
A = {w, x, y, z} 
B = {a,b}

Use the set-roster notation to write each of the following sets, and indicate 
the number of elements that are in each set:

a. A x B
b. B x A
c. A x A
d. B x B

(1.2.11)Set-roster notation 
(1.2.3b,c)Sets are not multi-sets
(1.2.5)R, Z, Q, etc
(1.2.5)Set-builder notation
(1.2.8)Subsets
(1.2.8)Proper Subsets
(1.2.5)Equality of sets
(1.2.3a,c) Distinction between element and subset relations 
(1.2.11)Cartesian products
ordered pairs
(1.2.10a,b,c)equality of ordered pairs
Set notation for ordered pair
==================================
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------------------------------------
Day Four: Wednesday, Aug 31, 2016
------------------------------------
* Take Roll

Class work on SECTION 1.3, the LANGUAGE OF RELATIONS AND FUNCTIONS.

* (3.1,3.5) Defining a relation between elements of A and elements of B as a 
subset of the cartesian product A x B.

* (3.1c) Domain of a relation (A in A x B)
* (3.1c,3.13) Co-domain of a relation (B in A x B)
* (3.1d,3.13) Arrow diagram of a relation & Graph of a relation
  + One-one if at most one arrow into each item in the Co-domain  
  + Onto if at least one arrow into each item in the Co-domain  
  + Function if there is one unique arrow from each item in the Domain to an 

element in the CoDomain.
*  (3.5,3.11) Graph of a relation
* (3.11,3.13) Functions 
* (3.11,3.13) Functions as types of relations
  (exactly one arrow from each domain element)
* (3.13) x, F(x) notation for function F
* (3.11) vertical line test to determine if a 'graph' is a function
* Functions as machines - black boxes
* Equality of functions - point-wise

Sample problems to work (pp 21-26): 
1.3.1: 
A={2,3,4}
B={6,8,10}
Relation R defined by
(x,y) element of AxB, y/x is an integer.
a. is 4R6?, Is 4R8?, Is (3,8) an element of R? Is (2,10) an element of R?

b. Write R as a set of ordered pairs
c. Write the domain and co-domain of R.
d. Draw an arrow diagram for R.

1.3.5:
Define a relation S from R to R as follows: For all (x,y) in RxR, 
(x,y) belongs to R means x ≥ y.

a. Is (2,1) in S? Is (2,2) in S?
   Is 2S3? Is (-1)S(-2)?
b. Draw the graph of S in the Cartesian plane.
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1.3.11: Define a relation P from R+ to R as follows: 

For all real x,y with x>0, 
(x,y) are related if x=y2.

Is P a function?  Explain.
If P is a function, for each x in R+, there must be a unique y in R such that 

x=y2

1.3.13
Let A={-1,0,1} and B={t,u,v,w}.  Define a function F:A--->B with a diagram.

-1            t

0             u

1             v

              w

(diagram indicates F(-1)=F(1)=u, and F(0)=w)

a. Write the domain and codomain of F.
b. Find F(-1), F(0), and F(1). 

------------------------------------
Day Five: Thursday, Sep 01, 2016
------------------------------------

I think we started with problem 3.13 that day, and worked through to almost 
finish problem 2.1.6.

Finish up with problems 3.5, 3.11, and 3.13 from last week.

Topics in Section 2.1
+ (3)(Forms of) Logical arguments
+  (J1) Statements (i.e. propositions)
+  (6) Using ~, ⋎, ⋏ to make compound statements
+  (32) Expressing inequalities using and, or
+  (16,18) truth values
+  (6) conjunction p ⋏ q
+  (6) disjunction p ⋎ q
+  Evaluating compound statements in general
+  Exclusive OR
+  (16,18) Logical Equivalence - same truth values for all substitutions of 

values for variables.
+  (30,32) Negations of conjunctions and disjunctions - De Morgan's Laws
+  (40,41) Tautologies - always true no matter the value of variables
+  (40,41) Contradictions - always false no matter the value of variables
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+  (48) Laws of Boolean algebra (e.g. commutative, associative, ... )
+  (48) simplifying statements using Boolean algebra

Problems to work

2.1.3

J1: Which of the following is a statement?
    (a) That's what I like about you.
    (b) Tupelo is a kind of tree.

------------------------------------
Day Six: Wednesday, Sep 07, 2016
------------------------------------
* Take Roll

With problems, start with 2.1.6(b), but keep in mind that I haven't yet done 
much discussion of the concepts in section 2.1.

2.1.6, 
Write the sentences in symbolic form Using ~, ⋎, ⋏ to make compound 

statements
s = "stocks are increasing"
i = "interest rates are steady"

a. Stocks are increasing but interest rates are steady
b. Neither are stocks increasing, nor are interest rates steady.

2.1.16, 2.1.18,
Use a truth table to determine if the two forms are logically equivalent - 

include a sentence justifying your answer, and showing you understand the 
meaning of logical equivalence.   ~, ⋎, ⋏

16: p ⋎ (p ⋏ q) versus p
18: p ⋎ t versus t

maybe do ~(p ⋏ q) versus ~p ⋏ ~q,
to illustrate non-equivalence - this is an example from section 2.1.

2.1.30, 2.1.32,
Use one of DeMorgan's Laws to write a logical negation:

30: "The dollar is at an all-time high AND the stock market is at a record 
low."

Negation: The dollar is NOT at an all-time high OR the stock market is NOT at 
a record low.
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------------------------------------
Day Seven: Thursday, Sep 08, 2016
------------------------------------
* Take Roll

32: -2 < x < 7

x <= -2 OR x >= 7
(Show graph for this.)

Make a truth table to prove one of DeMorgan's laws:

~(p ⋏ q)  <==> (~p) ⋎ (~q)
~(p ⋎ q)  <==> (~p) ⋏ (~q)

2.1.40, 2.1.41, 
Use truth tables to figure out which are tautologies and which are 

contradictions:

40: (p ⋏ q) ⋎ (~p ⋎ (p ⋏ ~q))
41: (p ⋏ ~q) ⋏ (~p ⋎ q)

------------------------------------
Day Eight: Monday, Sep 12, 2016
------------------------------------
* Take Roll

Begin by finishing this up:
Use truth tables to figure out which are tautologies and which are 

contradictions:

41: (p ⋏ ~q) ⋏ (~p ⋎ q)

2.1.48 A logical equivalence is derived below. Supply a reason for each step.  
(See p. 35 of Epp for the list of equivalences.)

(p ⋏ ∼q) ⋎ (p ⋏ q) ≣ p ⋏ (∼q ⋎ q) by  (a) 

                   ≣ p ⋏ (q ⋎ ∼q) by  (b) 

                   ≣ p ⋏ t by  (c) 

                   ≣ p  by  (d)

(a) is distributive law (3)
(b) is commutative law (1)
(c) is negation law (5)
(d) is identity law (4)
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Topics in Section 2.2 (Conditional Statements)
*  Hypotheses (antecedents), conclusions (consequents), and conditional 

statements
*  Precedence of --> among  ⋎, ⋏ , and ∼  (--->last, ∼ first)
*  Truth tables for conditional statements
*  Representation of if-then as OR   [ (p-->q ) ≣ (∼p ⋎ q) ]
MAKE SURE TO USE THE ABOVE AS THE DEFINITION OF (p-->q )

*  Negation of conditional statement  ( ∼(∼p ⋎ q) ≣ (p ⋏ ∼q) )
*  Equivalence of a conditional statement and its contrapositive
      ( (p-->q ) ≣ (∼q --> ∼p) )
   Maybe the easiest thing is to start with examples of contrapositives.

* Converse and inverse of a conditional statement [Conditional (p-->q)], 
[Inverse of the Conditional: (∼p-->∼q)], [Converse of the Conditional 
(q-->p)]

*  Only if and the bi-conditional.  In logic the phrase p only if q is 
logically equivalent to p --> q

*  If and only if p <--> q is logically equivalent to (p-->q) ⋏ (q-->p)
*  Necessary and sufficient conditions
     "r is sufficient for s" means r-->s
     "r is necessary for s" means (∼r --> ∼s) ≣ (s-->r)
     "r is necessary and sufficient for s" means (s<-->r), which is the same 

meaning as s if and only if r.

Sample illustrative problems:

2.2.2 Re-write in if-then form: "I am on time for work if I catch the 8:05 
bus"

------------------------------------
Day Nine: Wednesday, Sep 14, 2016
------------------------------------
* Take Roll

Rewrite in if-then form:
J2: Bear to the right or you'll get into a collision

2.2.16 Write the two statements in symbolic form and determine whether they 
are logically equivalent.  Include a truth table and a few words of 
explanation.

* If you paid full price, you didn't buy it at Crown Books.

* You didn't buy it at Crown Books or you paid full price.
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2.2.19 Write the negation of "If Sue is Luiz' mother, then Ali is his 
cousin."

2.2.24 Use truth tables to establish the truth of this statement:

       "A conditional statement is NOT logically equivalent to its converse."

------------------------------------

2.2.32 Rewrite as a conjunction of two if-then statements:
       "This quadratic equation has two distinct real roots if, and only if, 

its discriminant is greater than zero"

2.2.34 Rewrite the statement in if-then form in two ways, one of which is the 
contrapositive of the other.

       "The Cubs will win the pennant only if they win tomorrow's game."

2.2.40 Rewrite in if-then form: "Catching the 8:05 bus is a sufficient 
condition for my being on time for work."

Topics in Section 2.3 (Valid and Invalid Arguments)

* An argument is a series of statements - the last statement is called the 
conclusion, and the others are called premises

*  Valid argument - conclusion must be true if premises are true
in other words it is impossible for the conclusion to be false when the 
premises are true.

* Inferred, deduced
*  Testing an argument for validity with a truth table
*  Critical row of a truth table
* Syllogisms(two premises + conclusion), major premise, minor premise
*  Modus Ponens (p-->q; p; therefore q) 
* and Modus Tollens (p-->q; ~q; therefore ~p) 
* Rules of inference
*  Generalization (p ∴ p ⋎ q; q ∴ p ⋎ q)
* Specialization: (p ⋏ q, ∴ p; p ⋏ q, ∴ q)
* Elimination (p ⋎ q, ~q, ∴ p; p ⋎ q, ~p, ∴ q)
*  Transitivity (p-->q, q-->r, ∴ p-->r)
*  Proof by division into cases (p ⋎ q, p-->r, q-->r, ∴ r)
* Fallacies
* The converse error (the fallacy of affirming the consequent)
* The inverse error (the fallacy of denying the antecedent)
* Sound argument - valid and all premises true
* Unsound argument - any argument that is not sound
*  Contradiction Rule  (~p-->c, [c is a contradiction] ∴ p )
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Sample illustrative problems:

2.3.8: Use truth tables to determine whether  (p ⋎ q, p-->~q, p-->r, ∴ r) is 
valid.  Indicate which columns represent premises, and which represents 
the conclusion.  Explain how the truth table supports your answer.  Show 
you understand the definitions of valid/invalid.

------------------------------------
Day Eleven: Monday, Sep 19, 2016
------------------------------------
* Take Roll
*  Last Friday, I assigned a HW due this coming Thursday.

More sample illustrative problems from section 2.3:

2.3.22: Use symbols to write the logical form of the argument.  Then use a 
truth table to test the argument for validity.  Indicate which columns 
indicate the premises and which represents the conclusion. Include words 
of explanation showing you understand the meaning of validity.

If Tom is not on Team A, then Hua is on Team B.
If Hua is not on Team B, then Tom is on Team A.
∴ Tom is not on Team A, or Hua is not on Team B.

2.3.27: Write the logical form of the argument with symbols.  If valid, 
identify the rule of inference that assures its validity.  Otherwise state 
whether the inverse or converse error is made.

If this number is larger than 2, then its square is larger than 4.
This number is not larger than 2.
∴ The square of this number is not larger than 4.

------------------------------------
Day Twelve: Wednesday, Sep 21, 2016
------------------------------------
(There will probably be several "date boundaries" missing from here until 

October.)

Topics in Section 3.1 (Predicates and Quantified Statements I)

* Predicate calculus (the symbolic analysis of predicates and quantified 
statements)

* Statement calculus (also: propositional calculus - the symbolic analysis of 
ordinary compound statements)

* Predicate symbol - obtained by removing some or all nouns from a statement 
(for example: "is a student at Bedford College", or "is a student at")

* Predicate variables - "when concrete values are substituted in place of 
predicate variables, a statement results." -- for example x and y are the 
predicate variables here:  "x is a student at y".
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* Predicate (also: propositional function or open sentence - a predicate 
symbol together with suitable predicate variables)

* Domain of a predicate variable (the set of all values that may be 
substituted in place of the variable)

* Truth set of a predicate P(x) (the set of all values x in the domain of the 
variable that make P(x) true - {x∈D | P(x)})

* The Universal Quantifier ∀ (for all, for each)
* Truth or Falsity of a Universal Statement (true if and only if substitution 

of every element of the domain of the variable(s) yields a true statement)
* The Existential Quantifier ∃ (there exists, for some)
* Truth or Falsity of an Existential Statement (true if and only if the 

substitution of at least one value in the domain make a true statement)
* Universal Conditional Statements (for example: ∀x, P(x)-->Q(x))
* Equivalent Forms of Universal and Existential Statements
* Implicit Quantification (for example: "if n∈Z then n∈Q", or "24 can be 

written as the sum of two even integers")  The first actually contains a 
universal quantification, and the second contains an existential 
quantification.

Sample illustrative problems:

3.1.5: Let Q(x,y) be the predicate "If x<y then x2 <y2" with domain for both x 
and y being the set R of real numbers.

a. Explain why Q(x,y) is false if x = -2 and y=1.

b. Give values different from those in part (a) for which Q(x,y) is false.

c. Explain why Q(x,y) is true if x=3, and y=8.

d. Give values different from those in part (c) for which Q(x,y) is true.

3.1.13: Consider the following statement: 

∀ basketball players x, x is tall.

Which of the following are equivalent ways of expressing this statement?

a. Every basketball player is tall.
b. Among all the basketball players, some are tall.
c. Some of all the tall people are basketball players.
d. Anyone who is tall is a basketball player.
e. All people who are basketball players are tall.
f. Anyone who is a basketball player is a tall person.

3.1.16a: Rewrite in the form "∀ ________ x, _________"
"All dinosaurs are extinct."

Page �14



Math 2300, Section #1; 14:00-14:50 MWR P-102; Daily Notes  Fall, 2016 

3.1.16c: Rewrite in the form "∀ ________ x, _________"
"No irrational numbers are integers."

3.1.16e: Rewrite in the form "∀ ________ x, _________"
"The number 2,147,581,953 is not equal to the square of any integer."

3.1.32: Let R be the domain of the predicate variable x. Which of the 
following are true and which are false? Give counter examples for the 
statements that are false.

 
   (a)  (x>0) ⇒ (x>1)
   (c)  (x2 > 4) ⇒ (x > 2)

Topics in Section 3.2 (Predicates and Quantified Statements II)

* Negating Quantified Statements: ( ~(∀ x∈D, P(x)) ≣ (∃ x∈D, ~P(x)) )
*  Relation among ∀, ∃, ⋎, ⋏ 
    When D = {x1, x2, ..., xn} (∀ x∈D, P(x)) ≣ (P(x1) ⋏ P(x2) ⋏ ... ⋏ P(xn))
    and ( ∃ x∈D, P(x)) ≣ (P(x1) ⋎ P(x2) ⋎ ... ⋎ P(xn))

* Vacuous truth of a universal statement "For all balls on the table x, if x 
is in this (empty) bowl, x is blue" 

* Universal conditional statements
*  Meaning of necessary, sufficient, and only if in relation to quantified 

statements

(∀ x∈D, P(x) is sufficient for Q(x))  ≣  (∀ x∈D, P(x) ---> Q(x))
(∀ x∈D, P(x) is necessary for Q(x))  ≣  (∀ x∈D, Q(x) ---> P(x))
(∀ x∈D, P(x) only if Q(x))  ≣  (∀ x∈D, P(x) ---> Q(x))

* Logical equivalence of quantified statements: identical truth values, no 
matter what predicates are substituted for the predicate symbols, and no 
matter what sets are used for the domains of the predicate values.  For 
example both ~(∀ x∈D, P(x)) and (∃ x∈D, ~P(x)) have the same truth values, 
no matter what predicate P is, or what set D is.

* Negation of an Existential Statement: ~(∃ x∈D, P(x)) ≣ (∀ x∈D, ~P(x))
*  Negation of a Universal Conditional:   
       ~(∀ x∈D, P(x) --> Q(x))) ≣ (∃ x∈D, P(x) ⋏ ~Q(x))

*  Variants of Universal Conditional Statements

(i)   Statement: ( ∀ x∈D, P(x) --> Q(x) )
(ii)  Contrapositive: ( ∀ x∈D, ~Q(x) --> ~P(x) ) 
          (This is logically equivalent to i)
(iii) Converse: ( ∀ x∈D, Q(x) --> P(x) )
          (This is NOT logically equivalent to i)
(iv)  Inverse: ( ∀ x∈D, ~P(x) --> ~Q(x) )
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          (This is logically equivalent to iii 
               - it is the contrapositive to iii)

Sample illustrative problems for section 3.2

3.2.3a: Write a formal negation for (∀ fish x, x has gills.)
3.2.3c: Write a formal negation for 
          (∃ a movie m such that m is over 6 hours long.)

3.2.16: Write a negation for (∀ real numbers x, if x2 >= 1 then x >0.)
3.2.22: Write a negation for (If the square of an integer is odd, then the 

integer is odd.)
3.2.32: Write the converse, inverse, and contrapositive of this statement:
     (If the square of an integer is odd, then the integer is odd.)
     Indicate which among the four statements is true, and which is false.  
     Give counter examples for the ones that are false.

Topics in Section 3.3 (Statements with Multiple Quantifiers)

* Truth of a ∀ ∃ Statement (for example, in a "Tarski World")
* Truth of a ∃ ∀ Statement (for example, in a "Tarski World")
* Key idea for the two above - imagine making "choices" in the order the 

quantifiers are given.
* Interpreting Multiply-Quantified Statements
Translating from Informal to Formal Language

Negations of Multiply-Quantified Statements: 
    Example #1
       ~( ∀ x∈D, ∃ y∈E such that P(x,y) ) 
    ≣   ( ∃ x∈D, ~(∃ y∈E such that P(x,y)) )
    ≣   ( ∃ x∈D, ∀ y∈E, ~P(x,y) )
    Example #2
       ~( ∃ x∈D, ∀ y∈E, P(x,y) ) 
    ≣   ( ∀ x∈D, ~(∀ y∈E P(x,y)) )
    ≣   ( ∀ x∈D, ∃ y∈E, ~P(x,y) )
* Order of Quantifiers 
      - If you interchange ∀ and ∃, usually it changes the meaning
           Example: ∀ people x, ∃ a person y such that x loves y
* Formal Logical Notation

Go over the Tarski World Examples 3.3.1, 3.3.2, 3.3.9
Do a&b of Example 3.3.10: Formalizing Statements in a Tarski World

Sample illustrative problems for section 3.3

3.3.9a: Let D = E = {-2, -1, 0, 1, 2} Explain why the following statement is 
true: ∀ x∈D, ∃ y∈E such that x+y=0.
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3.3.15: (a) Rewrite the statement in English, without using the symbols ∀ or ∃ 
or variables and expressing your answer as simply as possible, and (b) 
write a negation for the statement: ∀ odd integers n, ∃ an integer k such 
that n=2k+1.

3.3.34 (a) Rewrite the statement formally using quantifiers and variables, 
and (b) write a negation for the statement: Somebody loves everybody

3.3.37 (a) Rewrite the statement formally using quantifiers and variables, 
and (b) write a negation for the statement: Any even integer equals twice 
some integer.

Topics in Section 3.4 (Arguments with Quantified Statements)

* The rule of universal instantiation: If some property is true of everything 
in a set, it is true of any particular thing in the set.

* Universal Modus Ponens: 
       ∀ x, If P(x) then Q(x); 
       P(a) for a particular a, 
       ∴ Q(a)

* Universal Modus Tollens: 
       ∀ x, If P(x) then Q(x); 
       ~Q(a) for a particular a, 
       ∴ ~P(a)

* Validity of Arguments with Quantified Statements
* The Quantified Form of the Converse Error
       ∀ x, If P(x) then Q(x); 
       Q(a) for a particular a, 
       ∴ P(a) <--- invalid conclusion

* The Quantified Form of the Inverse Error
       ∀ x, If P(x) then Q(x); 
       ~P(a) for a particular a, 
       ∴ ~Q(a) <--- invalid conclusion

* Universal Transitivity
        ∀ x, P(x) --> Q(x)
        ∀ x, Q(x) --> R(x)
      ∴ ∀ x, P(x) --> R(x)

Sample illustrative problems for section 3.4

3.4.7: The argument may be valid by universal modus ponens or universal modus 
tollens.  It may be invalid and exhibit the converse or inverse error.  
State whether valid or invalid and justify your answer:
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  All healthy people eat an apple a day
  Keisha eats an apple a day
∴ Keisha is a healthy person

3.4.8: The argument may be valid by universal modus ponens or universal modus 
tollens.  It may be invalid and exhibit the converse or inverse error.  
State whether valid or invalid and justify your answer:

  All freshmen must take writing
  Caroline is a freshman
∴ Caroline must take writing

* 3.4.23: Indicate whether the argument is valid or invalid.  Support your 
answer by drawing diagrams.

  All teachers occasionally make mistakes.
  No gods ever make mistakes.
∴ No teachers are gods.

* 3.4.24: Indicate whether the argument is valid or invalid.  Support your 
answer by drawing diagrams.

  No vegetarians eat meat.
  All vegans are vegetarian.
∴ No vegans eat meat.

Chapter Four (Elementary Number Theory and Methods of Proof)

Topics in Section 4.1 (Proof and Counterexample I: Introduction)

* Definitions of even and odd integers (2k or 2k+1)
* Definition of a prime number: (p>1 in Z st if n,m in Z+ and nm=p, then n=p 

or m=p)
* Definition of a composite number: (c>1 in Z, and c=nm for integers n>1 and 

m>1 )
* Constructive Proofs of Existential Statements (to show ∃ x∈D s.t. Q(x), one 

can either find an x that makes Q(x) true, or give a set of directions for 
finding an x that makes Q(x) true.  Either way, that's a constructive 
proof.)

* Non-Constructive Proof of Existence: (a) show existence is guaranteed by 
some theorem, or (b) show that the assumption that there is no x that 
makes Q(x) true leads to a contradiction.

* Disproving Universal Statements by Counterexample (Show P(x) ---> Q(x) is 
false by providing a counter example c such that P(c) && ~Q(c) )

* The Method of Exhaustion (show P(x) ---> Q(x) by individually checking each 
x such that P(x) is true.)
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* Generalizing from the Generic Particular  (e.g. "Direct Proof": show P(x) 
---> Q(x) by assuming x is some generic element of the domain, and basing 
the demonstration only on that)

* Existential Instantiation - if you have established that something exists, 
you can give it a name in your logical arguments, so long as you don't 
give it a name that is already being used for something else. (Example: if 
we know that m is an even number, then we know it is twice some integer, 
so we can give that integer the name k, and write m = 2k.)

Sample illustrative problems for section 4.1

8: Prove there is a real number x>1 such that 2x > x10.

The Homework problem (#10) is to prove that there is an integer n such that 
2n2 - 5n + 2 is prime.  Hint: 2n2 - 5n + 2 can be factored as (n-2)*(2n-1)

Prove the statement.  Use only the definitions of the terms and the 
Assumptions listed on page 146, not any previously established properties 
of odd and even integers.  Follow the directions in this section for 
writing proofs of universal statements. 

30: For all integers m, if m is even then 3m+5 is odd.

35: Prove the statement is FALSE: There exists an integer m >= 3 such that 
(m2-1) is prime.  

39: Find the mistake in the "proof":
    Theorem: The difference between any odd integer and any even integer is 

odd.  
"Proof: Suppose n is any odd integer, and m is any even integer.  By 

definition of odd, n=2k+1, where k is an integer, and by definition of 
even, m=2k, where k is an integer.  Then n-m = (2k+1)-2k = 1.  But 1 is 
odd.  Therefore, the difference between any odd integer and any even 
integer is odd."

55: Determine whether the statement is true or false.  Justify your answer 
with a proof or counter-example, as appropriate.  Use only the definitions 
of the terms and Assumptions listed on page 146, not any previously 
established properties.  

Every positive integer can be expressed as a sum of three or fewer perfect 
squares.

50: Determine whether the statement is true or false.  Justify your answer 
with a proof or counter-example, as appropriate.  Use only the definitions 
of the terms and Assumptions listed on page 146, not any previously 
established properties.

For all integers n and m, if n-m is even then n3-m3 is even.  
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Topics in Section 4.2 (Proof and Counterexample II: Rational Numbers)

* Rational Numbers (Q): Q = { r∊R | r = a/b, for integers a,b, with b≠0}
  They are called rational because they are ratios of integers

* More on Generalizing from the Generic Particular - seen as being prepared 
to meet the challenge of showing P(x) is true for any particular value of 
x that is offered by an 'adversary'.

* Deriving New Mathematics from Old - Once you have proved something, you can 
use it in proofs of new things.

* A Corollary is a statement whose truth can be immediately deduced from a 
theorem that has already been proved.

Sample illustrative problems for section 4.2

* H16: The quotient of any two rational numbers is rational. 
* 39: Find the flaw in the proof that the sum of two rational numbers is 

rational:
      "PROOF: Suppose r and s are rational numbers.  If r+s is rational then 

by definition of rational r+s = a/b where a,b are integers and b≠0.  Also, 
since r and s are rational, r=i/j, s=m/n for integers i,j,m,n with j≠0 and 
n≠0.  It follows that r+s = (i/j) + (m/n) = (a/b), which is a quotient of 
two integers, with a non-zero denominator.  Hence it is a rational number. 
This was what was to be shown."

Topics in Section 4.3 (Direct Proof and Counterexample III: Divisibility)

* When n∊Z, and d∊Z with d≠0, d|n means "d divides n," which means that n=dm, 
where m∊Z.  For example 2|10 because 10=2*5.  We also express this idea by 
saying "n is a multiple of d," "d is a factor of n," and "d is a divisor 
of n."

* Divisors of zero: If d∊Z with d≠0, we say d is a "divisor of 0" because it 
is true that 0=d*0.  (Every non-zero integer is divisor of 0.)  For 
example 0=42*0, and 42≠0, so 42 is a divisor of 0.

* However 0 is not a divisor of anything.

* Theorem 4.3.1 - A Positive Divisor of a Positive Integer: For all integers 
m, n, if m and n are positive and m|n, then m≤n. 

(Idea of the proof: n=mk, k∊Z. k must be ≥0. ∴ k≥1, so mk≥m, i.e. n≥m, qed)  

* Theorem 4.3.2 - Divisors of 1: The only divisors of 1 are 1 and -1.
(Idea of the proof: 1*1=1 and (-1)*(-1)=1 shows that 1 and -1 are divisors of 

1.  If m is any divisor of 1, then 1=mk, m∊Z and k∊Z. If m and k are 
positive then by Theorem 4.3.1, 1≥m. The only positive integer ≤1 is 1, so 
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that means m is 1.  If m and k are not both positive, they must both be 
negative.  In that case, 1=(-m)(-k), where both -m and -k are positive.  
Again by Theorem 4.3.1, we can conclude that -m is 1, in other words m=-1. 

* Theorem 4.3.3 - Transitivity of Divisibility: ∀ k∊Z, m∊Z, n∊Z, 
         if k|m and m|n, then k|n
(Idea of proof: m=kd, n=mh, where d∊Z and h∊Z. ∴ n=mh=(kd)h=k(dh). dh∊Z, so we 

have shown that k|n. qed)

* Theorem 4.3.4 - Divisibility by a Prime: Any integer n>1 is divisible by a 
prime number.

(Idea of proof: If n is prime, then it is divisible by a prime number - 
itself.  If n is not prime then n=r0s0 where r0 and s0 are both integers 
"properly" between 1 and n.  r0 divides n.  If r0 is prime, then n is 
divisible by a prime.  If r0 is not prime then r0=r1s1, where r1 and s1 are 
both integers "properly" between 1 and r0. By the transitivity of 
divisibility, r1|n. Also 1<r1<r0<n.  If r1 is prime, then n is divisible by 
a prime. If not, r1 can be factored as r1=r2s2, where r2 and s2 are both 
integers "properly" between 1 and r1, r2|n (by transitivity of 
divisibility), and 1<r2<r1<r0<n.  If r2 is prime, then n is divisible by a 
prime.  This process of finding integers ri has to stop with finding an ri 
that is prime eventually, because if it did not, there would be an 
infinite descending sequence of integers greater than 1: n>r0>r1>r2>r3> ... 
> 1.  This is a contradiction because, whatever positive integer n is, 
there are only finitely many integers between n and 1. Since the process 
stops with an ri that is prime, and since that ri divides n (by 
transitivity of divisibility), we have proved that n is divisible by a 
prime. qed)

* Theorem 4.3.5 - Unique Factorization of Integers Theorem (The Fundamental 
Theorem of Arithmetic): Given any integer n>1, n can be expressed as the 
product of a list of prime numbers.  (In this kind of list, the same prime 
is allowed to appear multiple times.) Except for different possible 
orderings, there is only one such list for each n.

   Example: 24 = 2*2*2*3, and there is no other way to write 24 as a product 
of primes, except for shuffling the factors around like this: 24=2*2*3*2.

Sample illustrative problems for section 4.3

* 15: Prove directly from the definition of divisibility: 
      For all integers a, b, and c, if a|b and a|c, then a|(b+c)

* H19: Determine whether the statement is true or false,.  If true, prove 
directly from the definitions.  If false, give a counter example. 

   For all integers a, b, and c, if a divides b then a divides bc.
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* 20: Determine whether the statement is true or false,.  If true, prove 
directly from the definitions.  If false, give a counter example. 

   The sum of any three consecutive integers is divisible by 3.  (Integers 
m<n are consecutive if and only if n=m+1.)

* 31: Determine whether the statement is true or false,.  If true, prove 
directly from the definitions.  If false, give a counter example. 

   For all integers a and b, if a|10b, then a|10 or a|b.

Topics in Section 4.4 (Proof and Counterexample IV: Division into Cases and 
the Quotient Remainder Theorem)

* The basic idea of dividing an integer j by another integer k is to 
'represent j as some groups of size k'.

* For example, the idea of dividing 13 by 5 is to express 13 as two groups of 
five, with three left over.

           11111 11111 111  = 13 = 2*5+3

* Theorem 4.41 - The Quotient Remainder Theorem: Given any integer n and 
positive integer d, there exist unique integers q and r such that 

   n = (d * q) + r  and 0 <= r < d

Example:
 53 = 3 * 17 + 2;  So here q=17 and r=2 (0 <= r < d)
-53 = 3 * (-17) - 2 = 3 * (-18) + 1; So here q=(-18) and r=1 (0 <= r < d)
    (When d is a factor of n, n=d*k for some integer k and the remainder r=0.
     In this case, -n=d*(-k) and the remainder is also zero.  When n=d*k+r, 

with 0 < r < d (in other words r≠0) then the quotient remainder numbers for 
-n are:

              -n = d*(-k-1) + (d-r)

The example above of 53=3*17+2 and -53 =3*(-18)+1 illustrate the idea.

When n>0 and d>0, and n=dk+r (0<=r<d), k=n/d (k=n div d) and r=n%d (r = n mod 
d), where / and % are the C++ (or Java) operators.

* We can use Theorem 4.4.1 to prove that every integer is either even or odd.  

(Idea of Proof: n=2q+r, where 0<=r<2.  r must be 0 or 1.  Therefore n is 
either even or odd. The uniqueness of q and r implies that n cannot be 
both even and odd.)

* Method of Proof by Division into Cases
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  To prove a statement of the form "If A1, or A2, or ... or An, then C," prove 
all of "If A1 then C, if A2 then C, ... and if An then C." The process 
shows that C is true regardless of which of  A1, A2, ..., An happens to be 
the case.

An example of this is a proof that two consecutive integers have opposite 
parity.  It's convenient to divide the proof into the two cases where the 
first integer is even, and the case where the first integer is odd.

* Theorem 4.4.6 - The Triangle Inequality: Let x, y be any two real numbers.  
|x+y|<=|x|+|y|.

* Lemma 4.4.4: For any real number r, -|r|<=r<=|r|.  
  Proof: if r>=0 then the inequalities just say that -r<=r<r, which is 

obviously true.
         On the other hand if r<0, then the inequalities just say that 

r<=r<=-r, which is also obviously true.

(Idea of the proof of the triangle inequality: 
From the lemma, we know that 
    x<=|x| and y<=|y| are true.  
Therefore x+y <= |x|+|y|.

Case 1: x+y >= 0.  In this case
|x+y| = x+y. Since x+y <= |x|+|y|, 
we can conclude |x+y| <= |x|+|y|.

Case 2: x+y < 0. In this case 
|x+y| = -(x+y) = (-x) + (-y).
We know from the lemma that 
(-x) <= |-x| = |x|, and 
(-y) <= |-y| = |y|.  
Therefore (-x) + (-y) <= |x|+|y|.
Since, in this case 
|x+y| = (-x) + (-y), we can also
conclude that |x+y| <= |x|+|y|.
)

Sample illustrative problems for section 4.4

* Problem 4.4.23: Prove that for all integers n, if n mod 5 = 3, then n2 mod 5 
= 4.

  (In other words if the remainder upon division of n by 5 is 3, then the 
remainder upon division of n2 by 5 is 4.)

* Problem 4.4.51: If m, n, a, b, and d are integers, d>0 and m mod d = a and 
n mod d = b, is (m+n) mod d = (a+b)?  Is (m+n) mod d = (a+b) mod d?  Prove 
your answers. 
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Topics in Section 4.6 (Indirect Argument: Contradiction and Contraposition)

* The Method of 'Proof By Contradiction' (this method uses the 'rule of the 
excluded middle' - the idea that if a statement is NOT FALSE, then it must 
be TRUE, because there's presumably nothing 'in between' TRUE and FALSE.)

   1. If you want to prove S by contradiction, begin by making ~S, the 
logical negation of S, a PREMISE.  

   2. Make logical deductions that lead to a contradiction - something that 
is known to be FALSE.

   3. Observe that ~S must be FALSE, because to assume it is true leads to a 
FALSE conclusion.  Observe that S must therefore be TRUE. (~S is FALSE 
means "S is TRUE")

Example: Let {p1, p2, ..., pn} be a finite list of n>=1 prime numbers, where n 
is an integer.  

 Let q = p1*p2*...*pn + 1,

in other words q is one more than the
product f the list of primes.
 Prove this statement S: 
"None of the primes in the list is 
a divisor of q."
  
Proof:  Assume ~S is true.  In other
words assume that there is a prime p in the list such that p|q, i.e. q=pk, 
where k is an integer.

Note also that p divides p1*p2*...*pn
- in other words p1*p2*...*pn = ph where h is the product of all the primes in 
the list that are not equal to p. (If p is the only prime in the list, then 
h=1.) Since 

q = p1*p2*...*pn + 1, 
                   
1 = q-p1*p2*...*pn = pk-ph = p(k-h).

This shows that 1 is a multiple of p.  
        
p is positive, by definition of prime, the product p(k-h)= 1 is positive. 
Therefore (k-h) is positive (it can't be negative or zero, because 1 is not 
negative or zero.)

p>1 by definition of a prime. 

Since p>1 and (k-h) is positive, we can multiply p>1 and get 
(k-h)p > (k-h).

Since (k-h) is positive, and (k-h) is an integer, (k-h) ≥ 1, and so putting 
together some things we've proved:
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1=p(k-h)>(k-h)≥ 1, by transitivity, 1>1, which is a contradiction.

Since assuming ~S leads to the contradiction above, ~S must be FALSE.
In other words, S must be TRUE: q = p1*p2*...*pn + 1, is not divisible by any 
of the primes {p1, p2, ..., pn}. qed

Sample illustrative problems for section 4.6

* Carefully formulate the negations of the statement.  Then prove the 
statement by contradiction.

  4.6.11: S = "The product of any nonzero rational number and any irrational 
number is irrational."

The negation ~S: "There exists a rational number q≠0, and an irrational number 
s, such that the product qs is rational."

Proof of S:

Assume that ~S is true.  q = m/n for integers m and n with m≠0 and n≠0. (We 
know m≠0 because q≠0 is given.) Since qs is rational, we have 
(m/n)s = (i/j) 
where i and j are integers and j≠0.  
It follows that 
(n/m)(m/n)s = (n/m)(i/j), 
which simplifies to
s = (ni/mj).  
We note that ni and mj are integers, and mj≠0 can be concluded because m≠0 and 
n≠0.  
Thus s is rational, by definition of rational.  This contradicts the 
assumption of ~S, which included the assumption that s was irrational.
Therefore ~S must be FALSE, so S must be TRUE.  qed.

* Prove by contraposition:

4.6.19: S = "If a product of two positive real numbers is greater than 100, 
then at least one of the numbers is greater than 10."

Proof: We attempt to prove the contrapositive of S: If two positive real 
numbers are both ≤ 10, then their product is ≤ 100.  (This is logically 
equivalent to S.) 
So suppose 0<a≤10 and 0<b≤10.  Since b>0, multiplying through a≤10 yields

                ab≤10b

Also multiplying through b≤10 by 10 yields: 10b≤100.
Using transitivity, we get ab≤100. qed.
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Topics in Section 5.1 (Sequences)

* Definition of a sequence
   A function F:D-->S from a set D to a set S, where D is either an 'integer 

interval' or an 'ascending integer ray'. In other words, the set D is 
either of the form D = {i∈Z|i≥n}, where n is some integer, or of the form D 
= {i∈Z|m≥i≥n}, where m and n are integers, with m≥n.

      Example: ai = (-1)i/(i!), i≥1 = -1, 1/2, -1/6, 1/24, -1/120, ...

* Definition of term, subscript, index, initial term, final term, subscript 
notation, definition of an ellipsis [...], infinite sequence, explicit 
formula, general formula (formulae for a general term of the sequence, 
expressed as a function of the subscript)

* An alternating sequence ... See the previous example. 

* Finding an explicit formula to fit given initial terms

* Summation Notation (See notation in the inset for Theorem 5.1.1) 

* expanded form, index of a summation, lower limit, upper limit
* Computing summations
* Summation terms given by a formula
* Changing between summation form and expanded form
* Separating off terms
* Telescoping sums
* Product notation (example below)

* Theorem 5.1.1: Properties of Summations and Products
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* Change of variable - (example - the sum of k3 from k=1 to k=3 is the same as 
the sum of j3 from j=1 to j=3).  [sums of consecutive cubes: 1, 9, 36, 100, 
...]

(Another example of change of variable: the sum of 1/(k+1) from k=1 to k=n is 
the same as the sum of 1/h from h=2 to h=n+1.)

* Factorial and binomial coefficient ("n choose r") notation
* Sequences in Computer Programming
* Dummy variable in a loop
* Applications

Sample illustrative problems for section 5.1

* Write the first four terms of the sequences defined by the formula

5.1.3: ci = [(-1)i]/3i for all integers i≥0

* Write the first four terms of the sequences defined by the formula

5.1.5  en = ⌊ n/2 ⌋ · 2  (2*floor(n/2) for all integers n≥0

* Find an explicit formula for the sequence 

5.1.12: 1/4, 2/9, 3/16, 4/25, 5/36, 6/49

* Write using summation or product notation

5.1.46: 

(2/(3*4))-(3/(4*5))+(4/(5*6))
         -(5/(6*7))+(6/(7*8))

* Write using summation or product notation

5.1.50: 
1/2! + 2/3! + 3/4! + ... + n/(n+1)!

Topics in Section 5.2 (Mathematical Induction I)

* The Principle of Mathematical Induction
  Let P(n) be a statement that is defined for integers n.  
  Let c be a fixed integer.  Suppose the following two statements are true:

  1. P(c) is true.
  2. For all integers k≥c, if P(k) is true, then P(k+1) is true.

If so, then P(n) is true for all integers n≥c
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* A principle logically equivalent to the principle of mathematical 
induction:

    Suppose S is any set of integers satisfying
 
      1. c ∈ S
      2. for all k≥c if k ∈ S then k+1 ∈ S

Then S must contain every integer greater than or equal to c.

* (S is the set of all integers for which the theorem is true, according to 
the principle of mathematical induction)

* The basic step - proving P(c)

* The inductive hypothesis - the assumption that P(k) is true, ∃ k ∈ Z, k≥c

* The inductive step - proving that P(k) --> P(k+1)

* A closed form is a formula for the value of a sum that does not contain an 
ellipsis or a summation sign.

    Example: n(n+1)/2 is a closed form for 1 + 2 + ... + n.

Sample illustrative problems for section 5.2

* 5.2.10 Prove the statement by mathematical induction:

12 + 22 + ... + n2 
    = n(n+1)(2n+1)/6 

for all integers n≥1

* 5.2.13 Prove the statement by mathematical induction:

The sum from i=1 to n-1 of i(i+1) equals n(n-1)(n+1)/3 for integers n≥3

* 5.2.20 Use the formula for the sum of the first n integers and/or the 
formula for the sum of a geometric sequence to evaluate the sum, or to 
write it in closed form:

        4 + 8 + 12 + 16 + ... + 200

* 5.2.22 Use the formula for the sum of the first n integers and/or the 
formula for the sum of a geometric sequence to evaluate the sum, or to 
write it in closed form:

        3 + 4 + 5  + 6 + ... + 1000
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* 5.2.27 Use the formula for the sum of the first n integers and/or the 
formula for the sum of a geometric sequence to evaluate the sum, or to 
write it in closed form:

        53 + 54 + 55 + ... + 5k, where k is any integer with k≥3.

Topics in Section 5.3 (Mathematical Induction II)

* Proving divisiblity of 22n -1 by 3

* Proving the inequality 2n+1 < 2n, for n≥3

* Proving a property of a sequence, e.g. when a1 = 2, and ak = 5ak-1
   The problem is to show that an = 2(5n-1) for n≥1.

* "A Problem with Trominoes"

Sample illustrative problems for section 5.3

* 5.3.6
* 5.3.10
* 5.3.21

Topics in Section 5.4 (Strong Mathematical Induction and the Well-Ordering 
Principle for the Integers)

* Principle of Strong Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a and b be 
fixed integers with a≤b.  Suppose the following two statements are true:

1) P(a), P(a+1), ... and P(b) are all true (basis step)
2) For any integer k≥b, if P(i) is true for all integers i from a through 
k, then P(k+1) is true. (inductive step)

Then the statement 

for all integers n≥a, P(n) 

is true.  (The supposition that P(i) is true for all integers i from a 
through k is called the inductive hypothesis.  Another way to state the 
inductive hypothesis is to say that P(a), P(a+1), ... P(k) are all true.)

* Actually the Principle of Strong Mathematical Induction is not really any 
'stronger' than the Principle of Mathematical Induction - anything that 
can be proved with one can also be proved with the other.  However 
sometimes one or the other is more convenient for someone constructing a 
proof.
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* The Principle of Strong Mathematical Induction is also known as the second 
principle of induction, the second principle of finite induction, and the 
principle of complete induction.

* Using the Principle of Strong Mathematical Induction, we can conveniently 
prove that every integer greater than 1 is divisible by a prime.

* Another example is a proof of a property of a sequence

* Another example is proof that a multiplication of k factors always requires 
k-1 multiplications, regardless of how the factors are associated.

* Another example: Existence and uniqueness of binary integer representations

* The Well Ordering Principle is equivalent to both the ordinary and the 
strong principles of mathematical induction.

The Well Ordering Principle: 

Every non-empty set of positive integers contains a least element.

* Equivalently, every non-empty set of integers that is bounded below 
contains a least element.

* Application: Proof of existence part of the Quotient Remainder Theorem.

(S = set of all non-negative integers of the form n-dk, where k is an 
integer)

Here is a proof of the existence part of the Quotient Remainder Theorem that 
uses only ordinary mathematical induction.

Theorem: ∀ n ∈ Z, ∀ d, 1≤d∈Z, ∃ q∈Z, ∃ r∈Z, such that P(n) is true, where P(n) 
is this statement: n=dq+r, and 0≤r<d

Proof: Case #1, assume n≥0.  We prove case #1 by induction.
(1) 0 = d*0+0 establishes that P(0) is true with q=0, and r=0
(2) Suppose that P(k) is true, ∃ 0≤k∈Z.  
    Then k = dh+s, where h∈Z, s∈Z, and 0≤s<d.
    It follows that k+1=dh+(s+1).  We know that 0<s+1≤d. If s+1<d, 
    then k+1=dh+(s+1) establishes that P(k+1) is true.  If it is not true
    that s+1<d, then s+1=d.  In that case, this is true: k+1=dh+d=d(h+1),
    which shows that P(k+1) is true with q=h+1, and r=0. 
    We have demonstrated that P(k) --> P(k+1)
It follows from the principle of mathematical induction that P(n) is true 
for all integers n≥0.

Case #2: Assume n<0.  By the proof above, P(-n) is true.  Therefore 
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     -n = dp+t, where p∈Z, t∈Z, and 0≤t<d

     Therefore n = d(-p)-t, and (-d)<(-t)≤0

     If t=0, then this shows that P(n) is true with q=-p, and r=0.
     If t≠0, then (-d)<(-t)<0, and writing n this way

     n = d(-p-1)+(d-t),

     we observe that (-d)<(-t)<0 implies 0<(d-t)<d,

     which shows P(n) to be true with q=(-p-1) and r=(d-t).

This establishes that P(n) is true for integers n<0.  So cases #1 and #2 
combined prove that P(n) is true for all integers n, qed.

* Application: Proof that a strictly decreasing sequence of non-negative 
integers is finite.

Sample illustrative problems for section 5.4

* 5.4.7:  
g(1)=3, g(2)=5, 
g(k)=3g(k-1)-2g(k-2), ∀k, 3≤k∈Z

Prove: g(n)=2^n+1, ∀n, 1≤n∈Z

* 5.4.8: h(0)=1, h(1)=2, h(2)=3,
         h(k)=h(k-1)+h(k-2)+h(k-3), 
         ∀k, 3≤k∈Z

   Prove: (a) h(n)≤3^n, ∀n, 0≤n∈Z
                 
(b) Suppose s is any real number such that s^3 ≥ s^2+s+1 (Such a number s must 

be more than 1.83.) 
  
Prove: h(n)≤s^n, ∀n, 2≤n∈Z

Topics in Section 5.6 (Defining Sequences Recursively)

* A recurrence relation for a sequence a0, a1, a2, ... is a formula that 
relates each term ak to certain of its predecessors ak-1, ak-2, ..., ak-i, 
where i is an integer with k-i≥0.  The initial conditions for such a 
recurrence relation specify the values of a0, a1, a2, ..., ai-1, if i is a 
fixed integer, or a0, a1, ..., am, where m is an integer with m≥0, if i 
depends on k.

* Computing Terms of a recursively defined sequence
  E.g. 
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f(1)=1, f(2)=1, f(n)=f(n-1)+f(n-2)... 
calculate f(4) and f(5).

* Writing a recurrence relation in more than one way
  E.g. 
f(1)=1, f(2)=1, f(n)=f(n-1)+f(n-2)

h(0)=1, h(1)=1, h(k+1)=h(k)+h(k-1)

* (Different) Sequences that satisfy the same recurrence relation
E.g. The Fibonacci sequence satisfies 
f(n) = f(n-1)+f(n-2) for n≥2
       The Lucas sequence satisfies the same relation.  However the initial 

conditions are different.
          Fibonacci: f(0)=1, f(1)=1
          Lucas:     f(0)=1, f(1)=3

* Showing that a sequence given by an Explicit Formula Satisfies a Certain 
Recurrence Relation

   E.g. Proof of the recursion relation C(k) = C(k-1)(4k-2)/(k+1) for the 
Catalan numbers 

[C(n) = (2n choose n) * (1/(n+1))

* Examples of Recursively Defined Sequences
* The recursive paradigm (aka the recursive leap of faith)

* The Tower of Hanoi
* The Fibonacci Numbers
* Compound Interest
* Recursive Definitions of Sum and Product

Sample illustrative problems for section 5.6

* 5.6.3: Find the first four terms
  c(k) = k(c(k-1))^2, k≥1,; c(0)=1

* 5.6.8: Find the first four terms
v(k)=v(k-1)+v(k-2)+1, k≥3; 
v(1)=1, v(2)=3

* 5.6.11: c(n)=2^n - 1, 0≤n, n in Z.
  Show c(k)=2c(k-1)+1 for 1≤k, k in Z

* 5.6.13: t(n)=2+n, n≥0; Show that t(k)=2t(k-1)-t(k-2), k≥3
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Topics in Section 5.7 (Solving Recurrence Relations by Iteration)

* Given a sequence that satisfies a recurrence relation, a solution to the 
sequence is an explicit formula for each member of the sequence.  

   Example: The Fibonacci sequence 
             Recurrence relation: F1=1, F2=1, Fn=Fn-1+Fn-2, ∀n, 2≤=n∈Z
             Solution (explicit formula): 

where:

* The Iteration Method of finding a solution: generate terms until you see a 
pattern, guess an explicit formula, and verify it.

Example: a0=1, an=an-1+2n+1, ∀n, 1≤=n∈Z
Solution by iteration: a1=a0+2(1)+1=4, a2=a1+2(2)+1=9, 
                       a3=a2+2(3)+1=16, a4=a3+2(4)+1=25

So it looks like an=(n+1)2 is an explicit formula for an.

The next step is usually to attempt to prove the guessed formula is correct, 
typically with proof by induction.

* Arithmetic sequence: {a0, a1, a2, ...}, ∃d∈Z, an=an-1+d, ∀n, 1≤=n∈Z
                       (solution: an=a0+dn, ∀n, 0≤=n∈Z)

* Geometric sequence: {a0, a1, a2, ...}, ∃d∈Z, an=dan-1, ∀n, 1≤=n∈Z
                       (solution: an=a0dn, ∀n, 0≤=n∈Z)
* other formulas: 
    Arithmetic Series: 1+2+3+...+n = n(n+1)/2
    Geometric Series: 1+x+x2+...+xn = (xn+1-1)/(x-1); 0≠x∈R

Sample illustrative problems for section 5.7

* 5.7.1b: Find a formula for the expression 3+2+4+6+8+...+2n; ∀n, 1≤=n∈Z

* 5.7.6: Use iteration to guess an explicit formula: 
      d1=2; dk=2dk-1+3, ∀k, 2≤=k∈Z

* 5.7.10: Use iteration to guess an explicit formula: 
      h0=1; hk=2k - hk-1, ∀k, 1≤=k∈Z
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* 5.7.35: Use mathematical induction to verify the correctness of the formula 
derived in exercise 5.7.10.

Topics in Section 5.8 (Second-Order Linear Homogeneous Recurrence Relations 
with Constant Coefficients)

* A second-order linear homogeneous recurrence relation with constant 
coefficients has the form

           xn=Axn-1 + Bxn-2, 

for all n greater than some fixed integer,
 
where A and B≠0 are fixed constant real numbers.

It's "second-order" because the value farthest back in the sequence used to 
define xn is xn-2.

It's "linear" because each term contains no more than one of xn, xn-1, or xn-2: 
there are no second or higher powers of xn, xn-1, or xn-2, and no products of 
two or more of xn, xn-1, or xn-2.

It's "homogeneous" because every term has the same "degree" - the same total 
number of powers of any of xn, xn-1, or xn-2.  (When a recurrence relation is 
linear, the only way it can fail to be homogeneous is if it has a constant 
term.)

It has "constant coefficients" because A and B are fixed constants that do 
not depend on n.

* If t is some number such that 

t2=At+B, 

then 

tk=Atk-1+Btk-2 

for all integers k≥2, which can be proved just by multiplying through the 
first equation by t multiple times.  

* The equation t2=At+B, and equivalently t2-At+B=0, is called the   of the 
relation.  Lemma 5.8.1 says basically that the sequence 
{x0=1,x1=s,x2=s2,x3=s3,x4=s4,... } satisfies the relation xn=Axn-1 + Bxn-2 if 
and only if s is a root of the characteristic equation.

Example: Consider the recurrence relation xn=xn-1 + 2xn-2  

Page �34



Math 2300, Section #1; 14:00-14:50 MWR P-102; Daily Notes  Fall, 2016 

The characteristic equation is T2-T-2=0, which factors as (T-2)(T+1)=0.  So 
the solutions are T=2 and T=-1.  By lemma 5.8.1, the sequences

{1,2,22,23,...} and {1,-1,(-1)2,(-1)3,...} satisfy the recurrence, and are the 
ONLY sequences of powers that satisfy the recurrence.

* Any 'linear combination' of solutions to the recurrence xn=Axn-1 + Bxn-2 is 
also a solution.  

Example: We showed that these sequences {1,2,22,23,...} and {1,-1,(-1)2,
(-1)3,...} are solutions to the recurrence, xn=xn-1 + 2xn-2

So, choosing any two arbitrary constants C and D, we can verify that 

     {C+D, 2C-D, 22D+(-1)2C, 23D+(-1)3C, ...} is also a solution to the 
recurrence.

Proof: Suppose xn=Axn-1 + Bxn-2 and yn=Ayn-1 + Byn-2 for sequences 

{xn} and {yn}.  Then Cxn+Dyn 
                 = C(Axn-1 + Bxn-2) + D(Ayn-1 + Byn-2) // by the assumption
                 = A (Cxn-1 + Dyn-1) + B(Axn-2 + Dyn-2) // by algebra

The latter term shows that the recursion relation holds for Cxn+Dyn

* If you have specific values z0 and z1 that you want for the first two terms 
of the solution sequence, and if you have two sequences {xn} and {yn} that 
satisfy the recurrence relation, you may be able to solve the two 
equations Cx0+Dy0 = z0 and Cx1+Dy1 = z1 for the values of C and D that give 
z0 and z1 as the first two terms of a solution. 

* If s and t are two distinct solutions to the characteristic equation, then 
the sequences {1,s,s2,s3,s4,... } and {1,t,t2,t3,t4,... } are solutions to 
the recurrence, and the equations C+D = z0 and Cs+Dt = z1 can be solved to 
get any two desired numbers z0 and z1 for the first two terms of a solution 
sequence.  Since s≠t, the equations are guaranteed to have a solution.

* Since any solution to the recurrence is completely determined by the first 
two values and the recurrence relation, the information in the previous 
bullet indicates that all solutions to the recurrence are of the form 

   {Csn+Dtn} when s and t are two distinct roots of the characteristic 
equation. 

* Double root case: If the recurrence relation is xn=Axn-1 + Bxn-2 and r is a 
double root of the characteristic equation T2-AT-B=0, then (T-r)2 is the 
characteristic equation, which is T2-2rT+r2=0.  Thus A=2r, B=-r2 and 

      A(k-1)rk-1 + B(k-2)rk-2 = Akrk-1 + Bkrk-2 - Ark-1 - 2Brk-2 
                            = krk-2(Ar+B) - rk-2(Ar+2B)
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     Because r is a root of T2-AT-B=0, Ar+B=r2 and because A=2r and B=-r2,
     Ar+2B=0.  Thus the last quantity in the chain of inequalities above is 

      krk-2(Ar+B) - rk-2(Ar+2B) = krk

     This shows that the sequence {nrn} is a solution to the recurrence. 
     ({rn} is also a solution, which can be shown in the same way as before.)
       
* Using the foregoing facts, it can be shown, with a routine proof, that when 

the characteristic equation has a double root, all solutions to the 
recurrence are linear combinations of {nrn} and {rn}, and a solution exists 
for every pair of initial values z0 and z1.

Sample illustrative problems for section 5.8

* Ex 5.8.1: Which of the examples are second-order linear homogeneous 
recurrence relations with constant coefficients?

* Ex 5.8.8: (a) find the sequences, based on roots of the characteristic 
equation, that are solutions to the recurrence relation; and (b) find an 
explicit formula that satisfies both the initial conditions and the 
recurrence relation.

* Ex 5.8.11: Find an explicit formula for the given recurrence relation and 
initial conditions.

* Ex 5.8.13: Find an explicit formula for the given recurrence relation and 
initial conditions.

Topics in Section 5.9 (General Recursive Definitions and Structural 
Induction)

* Recursive Definition of a Set:

  I. BASE: A statement that certain objects belong to the set
Example: "Each symbol of the alphabet is a Boolean expression"

  II. RECURSION: A collection of rules indicating how to form new set objects 
from those already known to be in the set.

Example: "If P and Q are Boolean expressions, then so are
(a) (P ∧ Q) and (b) (P ∨ Q) and (c) ~P."

  III. RESTRICTION: A statement that no objects belong to the set other than 
those coming from I and II.

Example: "There are no Boolean expressions over the alphabet other than 
those obtained from I and II."

* Definition of a string: Let S be a non-empty finite set.  A string over S 
is a finite sequence of elements of S.  The elements are called characters 

Page �36



Math 2300, Section #1; 14:00-14:50 MWR P-102; Daily Notes  Fall, 2016 

of the string, and the number of characters in the string is the length of 
the string.  The null string (aka empty string) is the string with no 
characters.  The null string has length 0 and is often denoted as ε 
(epsilon).

* The Structural Induction form of mathematical induction: 
Let S be a set that has been defined recursively, and consider a 
proposition (statement) P(x) that may be true or false about objects x in 
S.  To prove that P(x) is true for every x in S:

1. Show that P(x) is true for every object x in the BASE of S.
2. Show that for each rule in the RECURSION, if the rule is applied 

to an object x in S for which P(x) is true, then P(y) is true for
the object y defined by the rule.

Because no objects other than those obtained through the BASE and 
RECURSION conditions are contained in S, it must be the case that P(x) is 
true for every object x in S.

Sample illustrative problem for section 5.9

* 5.9.7: Define S recursively by
I. BASE: ε ∈ S
II. RECURSION: if s ∈ S, then

bs ∈ S, sb ∈ S, saa ∈ S, and aas ∈ S
III. RESTRICTION: Nothing is in S other than objects defined in I and II 

above.
Use structural induction to prove that every string in S contains an even 

number of a's.

Topics in Section 6.1 (Set Theory: Definitions and the Element Method of 
Proof)

* The Element Argument: to prove that X ⊆ Y, where X and Y are sets:
1. Suppose x is a particular but arbitrarily chosen element of X, and
2. Show that x is an element of Y

* Set Equality:
Given sets A and B, A=B if and only if (A ⊆ B and B ⊆ A)

* Set Operations
  Suppose A and B are subsets of some 'universal set' U
  The union A ∪ B of A and B is the set of all elements of U that are in 

either A or B, or both.
The intersection A ∩ B of A and B is the set of all elements that are in 
both A and B.
The difference A-B is the set of all elements of A that are not elements 
of B.
The complement Ac of A in U is the difference U-A.
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* Interval Notation for real numbers:
Given a,b in R with a≤b

  (a,b) = {x∈R|a<x<b}
  [a,b] = {x∈R|a≤x≤b}
  [a,b) = {x∈R|a≤x<b}
  (a,b] = {x∈R|a<x≤b}
  (a, ∞) = {x∈R|a<x}
  [a, ∞) = {x∈R|a≤x}
  (-∞,b) = {x∈R|x<b}
  (-∞,b] = {x∈R|x≤b}

* Unions and Intersections of an Indexed Collection of Sets
* Alternative Notations: e.g. A0 ∪ A1 ∪... ∪ An 

* The Empty Set.  The empty set is the set with no elements.  There is only 
one empty set.  It is denoted ∅.

* Disjoint Sets.  Two sets are disjoint if their intersection is the empty 
set.  Example: (1,2) and (3,4) are disjoint. 

 
* Pairwise Disjoint Collections of Sets (aka Mutually Disjoint, aka Non-

overlapping): A collection of sets A0, A1, A2, ... An is mutually disjoint 
if Ai ∩ Aj = ∅ whenever i≠j.

* A Partition of Sets: A finite or infinite collection of non-empty sets A0, 
A1, A2, ... is a partition of a set A if and only if
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1. A is the union of all the Ai.
2. The sets A0, A1, A2, ... are pairwise disjoint.

* Power Sets: The power set P(A) of the set A is the set of all subsets of A.

* Cartesian Products
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Sample illustrative problem for section 6.1 (Definitions and the Element 
Method of Proof)

* Ex 6.1.4: A = integral multiples of 5, B = integral multiples of 20.
Is A ⊆ B?  Is B ⊆ A? Explain

* Ex 6.1.11: 
The universal set is the real numbers R.  
The intervals A=(0,2]; B=[1,4); C=[3,9) are given.
Find various unions, intersections, and complements involving A,B,C.

(a) (A ∪ B) = ? ; (b) (A ∩ B) = ?; (c) (AC) = ? (d) (A ∪ C) = ?; 
(e) (A ∩ C) = ?; (f) (BC) = ?; (g) (AC ∩ BC) = ?; (h) (AC ∪ BC) = ?;
(i) ((A ∩ B)C) = ?; (j) ((A ∪ B)C) = ?;
* Ex 6.1.15

Draw Venn Diagrams to describe sets satisfying certain conditions
(a) (A ∩ B) = ∅, A ⊆ C, (C ∩ B) ≠ ∅ 
(b) A ⊆ B, C ⊆ B, (A ∩ C) ≠ ∅

(c) (A ∩ B) ≠ ∅, (B ∩ C) ≠ ∅, (A ∩ C) = ∅, A ⊈ B, C ⊈ B

* 6.1.27 (a) & (d)
(a) Is {{a, d, e}, {b, c}, {d, f}} a partition of {a, b, c, d, e, f}?
(d) Is {{3,7,8}, {2,9}, {1,4,5}} a partition of {1,2,3,4,5,6,7,8,9}?

* 6.1.31: Find various power sets. A = {1,2} ; B = {2,3} 

Find: P(A ∩ B), P(A), P(A ∪ B), P(A X B),
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Topics in Section 6.2 (Properties of Sets)
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* How to prove two sets A, B are equal: Prove (A ⊆ B) and (B ⊆ A)
* Theorem 6.2.4: A set with no elements is a subset of very set.
* There is only one set with no elements, the empty set.
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* How to prove a set is empty by contradiction: Assume it has an element and 
derive a contradiction.

Sample illustrative problem for section 6.2 (Properties of Sets)

* 6.2.3: Fill in the blanks of the following proof that ∀ sets A, B, C, when 
(A ⊆ B) and (B ⊆ C), (A ⊆ C).

Proof: Suppose A, B, and C are sets, and that (A ⊆ B) and (B ⊆ C).  To show 
that (A ⊆ C), we must show that every element in ____(a)____ is in 
___(b)____.  But given any element in A, that element is in ____(c)_____ 
(because A ⊆ B), and so that element is also in ____(d)____ (because 
____(e)____).  Hence (A ⊆ C).

* 6.2.10: Use an element argument to prove the statement.  Assume all sets 
are subsets of a universal set U.  

For all sets A, B, and C, (A - B) ∩ (C - B) = (A ∩ C) - B

* 6.2.16: Use an element argument to prove the statement.  Assume all sets 
are subsets of a universal set U.  

For all sets A, B, and C, if (A ⊆ B) and (A ⊆ C) then ( A ⊆ (B ∩ C) )

* 6.2.34: Use the element method for proving the set equals the empty set. 
(i.e. Suppose the set has an element and derive a contradiction.) Assume 
that all sets are subsets of a universal set U.

For all sets A, B, and C, if (B ∩ C) ⊆ A, then (C - A) ∩ (B - A) = ∅
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Topics in Section 6.3 (Disproofs, Algebraic Proofs, and Boolean Algebras)

* A way to construct a counter example to a false set identity

We check the diagram to ascertain the plausibility that 

(A - B) ∪ (B - C) = A - C 

is a correct set identity.  Using the labels of the sections to construct 
example sets, we get A = {1,2,4,5}, B = {2,3,5,6}, and C={4,5,6,7}.  Here 
A - C = {1,2}, A - B = {1,4}, and B - C = {2,3}

* Proof by induction on 0≤n∈Z that a set with n elements has 2n subsets.

Sample illustrative problem for section 6.3 (Disproofs, Algebraic Proofs, and 
Boolean Algebras)

* 6.3.1: Find a counter-example: ∀ sets A, B, and C, (all contained in a 
universal set, U) (A ∩ B) ∪ C = A ∩ (B ∪ C)
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* 6.3.17: Prove or give a counter-example: ∀ sets A, B (contained in a 

universal set U): if A ⊂ B then P(A) ⊂ P(B).  

* 6.3.18: Prove or give a counter-example: ∀ sets A, B (contained in a 
universal set U): 

* 6.3.34: Construct an algebraic proof (a proof that uses only the identities 
of theorem 6.2.2.)

Prove: ∀ sets A, B, C (contained in a universal set U):
(A-B)-C = A-(B ∪ C)

Topics in Section 8.1 (Relations on Sets)

* Examples of binary relations: x≤y in RxR, and "m-n is even" in ZxZ.
* The inverse of a binary relation: If R is a relation on AxB, then R-1 is 

the relation on BxA given by (b,a) ∈ R-1 if and only if (a,b)∈ R. 
* A relation on a set A is a subset of AxA.  It can be represented as a 

directed graph with a set of nodes representing the elements of A.
* An N-ary relation - a relation on the cross product of N sets - is a 

subset of that cross product.  As objects of logical and mathematical 
study, relational databases are viewed as N-ary relations.

Sample illustrative problem for section 8.1 (Relations on Sets)

* 8.1.1: The congruence relation E from Z to Z is defined by 
m E n <--> (m-n) is even, ∀ m,n ∈ Z. 

a) Which of these are true? 0E0, 5E2, (6,6)∈E, (-1,7)∈E
b) Prove that nE0 is true for any even integer n.

* 8.1.9: Let A be the set of all strings of length 4 made of 0's 1's and 
2's.  Define the relation R on A by: sRt <--> the sum of the characters in 
s is equal to the sum of the characters in t.

a) is 0121 R 2200?  What about 1011 R 2101, 2212 R 2121, and 1220 R 
2111?

* 8.1.10: Let A = {3,4,5} and B = {4,5,6} and let R be the "less than" 
relation on AxB.  State explicitly which ordered pairs are in R and R-1.

Topics in Section 8.2 (Reflexivity, Symmetry, and Transitivity)

* Definition of reflexive relation on a set, symmetric relation on a set, 
and transitive relation on a set

* The relation of "equality" on the set of real numbers is reflexive, 
symmetric, and transitive.  (Any 'reasonably defined' equality relation 
will be reflexive, symmetric, and transitive.  For example equality of 
sets is reflexive, symmetric, and transitive.)
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* The "less than" relation on real numbers is transitive.  The "less than or 
equal" relation on real numbers and the set containment relation are 
reflexive and transitive, but not symmetric.  

* Congruence of integers modulo n is reflexive, symmetric, and transitive.

* Given a relation that is reflexive and symmetric, the relation can be 
extended to its "transitive closure" -- by adding all the necessary pairs 
to the relation to make it transitive.

Sample illustrative problem for section 8.2 (Reflexivity, Symmetry, and 
Transitivity)

8.2.2

8.2.4

8.2.21

8.2.22

8.3.21

Topics in Section 8.3 (Equivalence Relations)

* The Relation Induced by a Partition: Given a partition of a set U (a 
collection of pairwise disjoint subsets of U whose union is U), we can say 
x is related to y if x and y are both elements of the same subset of the 
partition.

* Theorem 8.3.1: A relation R induced by a partition of a set U is reflexive, 
symmetric, and transitive.

* Definition: Suppose R is a relation on a set U. R is called an equivalence 
relation if it is reflexive, symmetric, and transitive.

* Definition: If R is an equivalence relation on a set U, and if a ∈ U, then 
the equivalence class [a] = {b ∈ U | aRb }.

* Theorem 8.3.4: The Partition Induced by an Equivalence Relation: If U is a 
set and R is an equivalence relation on U, then the distinct equivalence 
classes of R form a partition of U; that is, the union of the equivalence 
classes is all of U, and the intersection of any two distinct classes is 
empty.

* Definition: if S is one of the equivalence classes of a relation R on a set 
U, and if x ∈ S, we say that x is a representative of S.

Sample illustrative problem for section 8.3 (Equivalence Relations)
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8.3.6

8.3.21

Topics in Section 9.4 (The Pigeonhole Principle)

* The Pigeonhole Principle: A function from one finite set into a smaller 
finite set cannot be one-to-one: There must be a least two elements in the 
domain that have the same image in the co-domain.

* The Generalized Pigeonhole Principle: For any function f from a finite set 
X with n elements to a finite set Y with m elements, and for any positive 
integer k, if k < (n/m), then there is some y ∈ Y such that y is the image 
of at least k+1 distinct elements of X. (The number of pigeons in every 
pigeonhole can't be less than the average, n/m, number of pigeons per 
pigeonhole. )

Sample illustrative problem for section 9.4 (The Pigeonhole Principle)

9.4.4

9.4.27

Possible Final Exam Topics

* Relations
* Logical Statements and Statement Forms
* Negations of various kinds of statements
* Conditional statements, converses, contrapositives, and inverses
* Valid and invalid arguments
* Existential and Universal statements
* Second-order linear homogeneous recurrence relations with constant 

coefficients
* Elementary proofs using basic definitions and properties
* Proof by contradiction
* Proof by induction
* Properties of sets and power sets
* Relations on a set. 
* Reflexivity, Symmetry, and Transitivity
* Equivalence Relations and equivalence classes
* Partitions of a set
* The Pigeonhole Principle
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