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Cryptography: Techniques, Algorithms and Methods

Cryptology is really the official term for the study of methods of obfuscating and

deciphering information. It is a field fraught with mathematics, creativity, logic, and

ultimately a little bit of luck.  Cryptography, on the other hand, is an application of

cryptology. For the purposes of this paper, we will lump them together and simply refer

to the entire field, both the study and the application, as cryptography.

A cryptographic cipher can be anything that obfuscates a particular piece of data

from anyone but the intended recipient(s). Mathematically, encryption can be viewed as

any function E, which, when applied to a plaintext P, yields a ciphertext CE.

Concurrently, there exists a decryption function D which when applied to CE yields P.

There are two basic classes of encryption algorithms: symmetric and asymmetric.

In a symmetric algorithm, both ends of the communication have a pre-shared key

K which, when used as a parameter along with P to function E yields CKP, and when

passed to D along with CKP, returns P. This is akin to a lock that has two keys, both of

which are identical. As long as nobody except the intended targets get their hands on

either copy of the key, communication is secured.

With asymmetric algorithms, on the other hand, each end has two separate keys.

One key is a “public” (or encrypting) key (KE), which is freely shared with anyone who

wants it. The other is a “private” (or decrypting) key (KD), which is never shared with

anyone. The algorithm is designed such that any plaintext message P when transformed



by the algorithm using KE as the key yields CE such that it can be decrypted by

transforming it using KD and only KD. There is some very fancy mathematics involved in

this, which I will describe further on.

To understand cryptography, one must understand the need for cryptography. As

time passes and technology gets better, so does the ability for people to invade our

privacy, and thus the need for stronger cryptographic techniques to keep our private

information private.  For example, as we moved from old crossbar telephone systems to

newer ESS (electronic switching systems), our capacity for communications increased,

but with it came an enhanced ability to monitor those communications. Such is the same

with the Internet. A packet you send from point A to point B will not only be seen by

those two points. Rather, it will likely traverse a wandering path of hops until it reaches

its destination. If the packet’s contents are not protected from an outsider’s view in some

way, then anyone along the path has access to view the contents of that packet. These

types of scenarios are where encryption comes into play.

Unfortunately, we cannot trust everyone to play fair in our world; unscrupulous

individuals are always willing to use the weaknesses in technology and humans to their

advantage. This fact was recognized as far back as Julius Caesar’s time. While not

necessarily accredited with the discovery or invention of ciphers, he is often referred to as

the first historical figure to make use of cryptography in his communications.  In his case,

he used a relatively weak, but effective, cipher to obfuscate his messages known as the

Caesarian Cipher. In the Caesarian Cipher, one chooses a value k between 1 and 25. This

value is used to shift every letter to be written over k positions to produce the end result,

or ciphertext.



For example, if the sender and recipient agree upon a value of 3 for k, then the

plaintext message “Meet at the river at dawn” would be transformed as follows:

P: MEET AT THE RIVER AT DAWN
C: PHHW DW WKH ULYHU DW GDZQ

Yielding a string of text that looks like gibberish at first glance. Of course, this is

not a very good cipher for reasons I will discuss later on, but in its day, it served its

purpose.  Without a computer at hand, or advanced mathematical tools, it can take

someone a long while to figure out the encoded message. This type of cipher is very

much like the puzzles in the New York Times of today.  Another example of a

polyalphabetic cipher is the Vigenere cipher, which is much more advanced than the

Caesarian cipher. A detailed description of this cipher is attached at the end of this paper.

With the advent of mechanical computation devices (and later, electronic

computers), the ability of cryptologists to produce stronger encryption methods grew with

leaps and bounds. The onset of World War II showed the world its first glimpse of what

might be referred to as “information warfare”, a war where battles would be won or lost

based upon who knew the enemy’s presumed “secrets.” This need for secret keeping

caused the Germans to develop what became known as the Enigma, a complex mechanic-

electrical device for encrypting messages, which stumped the British intelligence for

quite a long time.  This was the first real step towards computer encryption in the form of

a small box that had both mechanical and electric parts.

DEA (Digital Encryption Algorithm) was one of the first algorithms designed for

computers in the early 70s. In 1976, DEA was adopted as the federal standard for all non-

classified government communications and then became known as DES (Digital



Encryption Standard). DES is a 64-bit block cipher, which means that a 64-bit block of

plaintext “goes in one end” of the algorithm and a 64-bit block of ciphertext “comes out

the other end.” DES is a symmetric cipher and uses a 56-bit key with 8 bits of parity to

ensure the key is transmitted properly.  DES combines 16 rounds of substitution followed

by permutation based on the key used. Its repetitive nature made it well suited for

computational application in the 70s, as well as for specialized chips (which exist today)

to do DES encryption.

Algorithmically, DES is quite simple; it uses algebraic functions that can be

carried out quickly by a CPU. The initial and final permutations have no effect on the

security of the DES algorithm, they are thought to be there to make it easier to handle the

data on the CPUs DES originally targeted. The DES function itself is the complicated

portion of the algorithm, and a description and example is attached at the end of the

paper.  DES, as an encryption method, suffers from one small flaw, being designed in the

70s, we can now use today’s computers to crack a simple 56-bit DES encrypted block in

a relatively timely fashion (meaning months, not eons). This was proven by the EFF

(Electronic Frontier Foundation) in 1998 in the form of a custom-built machine. The cost

of the hardware was $220,000, and was able to crack a 56-bit DES key in an average of

4.5 days. This threat can be side skirted, however, by using what is known as 3DES (or

triple-DES), in which the block is encrypted using one key, decrypted using a second --

but incorrect  -- key and then encrypted once more using the original key. This brings the

order of complexity up from 256 to 2112, making it a much tougher nut to crack.

The leap from symmetric encryption functions such as DES to asymmetric

models such as DSA (digital signature algorithm) was a significant one. Pioneered by



Whitfield Diffie and Martin Hellman, their discoveries in the area of public-key

cryptosystems helped to move cryptography into the next era. Their idea is genius and

simple at the same time. By using public keys, we can eliminate the need for pre-shared

secrets, reducing the margin of human error and allowing us to use much stronger

encryption algorithms because we can use much larger keys. Additionally, this makes

implementation of this encryption much more flexible, as software can securely handle

the negotiation of secrets to provide the encryption of data.

Looking forward, we have quantum cryptography upon the horizon, which

leverages natural phenomena found in electrons to provide secrecy and immunity from

prying eyes. Think -- if the act of observing the transmission alters the transmission, it

can be mighty tricky to intercept the data en-route. As technology moves forward, so

does our need for stronger encryption to keep our private data private. This means newer

and better methods of encryption to keep up with newer and better eavesdropping

capabilities.
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The Vigenere Cipher

The Vigenere cipher is another simple example of a “polyalphabetic” cipher.  This
cipher uses a simple device called the “Vigenere Tableau”, which dictates letter
substitution for a given combination of plaintext and keyword letters. For one to encode
text using this cipher, first they must choose a pre-shared keyword, such as "FOOBAR",
and write it above the plaintext message character for character until running out of
plaintext as such:

       FOOB AR FOO BARFO OB ARFO
P: MEET AT THE RIVER AT DAWN

The ciphertext letter is looked up in the tableau by looking at the column containing
the keyword’s letter, and the containing the plaintext letter. Thus the first "M" of the
message is encrypted as "R.” Following this, the first "E" becomes an "A,” and so on,
until we result in the fully encrypted ciphertext as:

       FOOB AR FOO BARFO OB ARFO
P: MEET AT THE RIVER AT DAWN

    C: RAAU AK YVS SIMJF OU DRBB

 To decrypt the Vigenere cipher, you simply run this process in reverse.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

The Vigenere Tableau



DES Algorithm

The DES algorithm relies upon two basic mathematic functions, substitution and
permutation. This makes it a relatively quick algorithm to use, as well as easy to
implement both in software and hardware. To begin with, we need a data block of 64 bits,
this is because DES is a “64-bit block cipher”, meaning it works on data chunks that are
64 bits wide. If we have a block of data that is not evenly divisible by 64, it will typically
be padded with 0s to make it so. In addition to our 64-bit data block, DES requires a 64-
bit key K. The output is a 64-bit block of ciphertext that can be decrypted by applying
DES in reverse using the same original key K.

DES works in 16 rounds, each round involves swapping left and right halves and
applying the DES function to the new right half. Below is a simple flowchart of DES.

A simplified DES flowchart

At the heart of this is the actual DES function (f on the chart above), which is where all
the real work happens.



Example:

M: 0000000100100011010001010110011110001001101010111100110111101111
K: 0001001100110111001011001010110000001000000100010010100001000000

1. Create 16 sub keys of K each with 48-bit length
Our 64 bit key K is permuted according to Table 1 giving us KP, note how there
are bits missing, this is because every 8th bit is used as parity, so we drop them in
the permuted key. We take KP and split it into two 28-bit halves, A0 and B0. Now,
we create 16 variations of A0 and B0 according to Table 2. Each cycle, we perform
a certain number of left shifts, as taken from the table. For example, taking K and
permuting it, we get:

KP: 10000000010011100010001101010010001100000011000011101100

Splitting in half yields:

A0: 1000000001001110001000110101
B0: 0010001100000011000011101100

Following the rotation schedule for the first 2 iterations gives us:

A1: 0000000010011100010001101011
B1: 0100011000000110000111011000

A2: 0000000100111000100011010110
B2: 1000110000001100001110110000

And, finally, once we’ve followed through with all 16 rotations, we concatenate
An and Bn and permute based on Table 3 to yield Kn as such:

K1: 01110000001000101100101011001000101101010010010
K2: 00100001001110101011010010001001101100000101001
K3: 10010100001111000100000000100010010111100100000
K4: 01000011011001100111000001011000000010000110110
K5: 11001100110101010000010010000101010010010011000
K6: 01000010100000110100101101000001001100101010001
K7: 00101000110100000010001110110011100000000101100
K8: 10100001000010011100101000000000000111110000110
K9: 00000011000100101101101000011100001100010000000
K10: 00111100010110000100010010100000011000001100101
K11: 00000010011010010100100001100010101010110000010
K12: 00001001011001010011010110110100000001000011011
K13: 11000100000011010000100100001111000100101000010
K14: 01000011101000101010000101010100111000001100000
K15: 10011000100111001000001000100000100011001001100
K16: 10000000000010100000101001000010000101011011000

Once we have the subkeys, we move on to the next step, encoding the 64-bit
block of data.



2. Encoding the 64-bit block

Using Table 4, we rearrange the bits of the original message M to get MIP. This
initial permutation has no effect on the outcome of the algorithm; it is said that it
was implemented initially to make the DES algorithm easier to implement on
smaller-word machines such as those back in the 70s.  Once we have MIP, we split
it in half to give us 2 32-bit blocks, a ‘left’ block L0 and a ‘right’ block R0.

Now we take these two halves and perform the DES operation on them 16 times.
Each time, we swap the left and the right halves, making the left value the right
hand result of the previous iteration, and the right value is the sum of the DES
function applied to the previous right hand side and the current key Kn combined
with the previous iteration’s left hand side with XOR addition. Like such:

Ln = Rn-1
Rn = Ln-1 + DES(Rn-1, Kn)

The hard part of this is understanding the DES function, which is a brilliant and
obscure function that I will try my best to explain.

1. Expand our 32-bit string into a 48-bit string. This is accomplished by
looking at Table 5 and permuting the old string into a new one. In this
permutation, you will notice we duplicate certain bits, this makes the
input block the same length as our keys which are 48-bits wide.

2. XOR the new input block with our key Kn
3. Now we take the XORed result and group it into 8 groups of 6-bit

chunks, Ci,.
4. For each of the chunks, Ci, we need to create a 4 bit block as our

output (our original input block is really 64 bits, so we need 2 32-bit
blocks, right now we have 48), so we create this 4-bit value by looking
up the appropriate numbers in the matching S box (See Table 6) using
the following algorithm:

a. For 1 <= n <= 8, take block Cn and S-Box Sn
b. Take bits 0 and 15 of the 16 bits and let this represent a 2-bit

base-2 number from 0 to 3, use this as the row index in Sn.
Take the middle 4 bits and let this represent a 4-bit base-2
number between 0 and 15; use this as the column index in Sn.
Take this value in 4-bit binary as your 4-bit block in place of
Cn.

3. Finishing up.

Once you’ve completed the 16 iterations in step 2, apply the permutation bit-order
in Table 6, this functions as the inverse of the initial permutation. This will yield
an encrypted 64-bit ciphertext block.



Tables

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 1 -- KP Bit-order

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# SHL 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

Table 2 – Key schedule (Left shift count)

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Table 3 – Kn Bit-order

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 4—Initial Permutation bit-order



32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 5 –  Shuffle Permutation

0 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 6 – Inverse IP bit-order

Table 7 – “S Boxes”

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S1

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S2

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7



1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S3

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S4

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S5

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S6

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S7

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

S8
Table 5 S-Boxes


