
Senior Seminar
Jorge Campos

 1

The .NET Framework and C#

What is .NET?

When I first came across the Microsoft .NET concept some years ago, I

found difficult to grasp the idea behind the pile of methodologies and

technologies that Microsoft tried to introduce as .NET.

At first, the term .NET was used to identify a complete set of new

products that Microsoft was working on: a new developer environment

(Visual Studio .NET), a new operating system (Windows .NET server),

a new database (SQL Server .NET), and most important a new way of

envisioning the creation of software.

Five years later since my first contact with .NET, I have found that

then branding use of .NET has been dropped so we shouldn’t expect to

see any Windows .NET server operating system of database. The

actual official definition is the following: “Microsoft® .NET is a set of

software technologies for connecting information, people, systems,

and devices. This new generation of technology is based on Web

services—small building-block applications that can connect to each

other as well as to other, larger applications over the Internet.”1

This definition is still a bit general and in my opinion does not tell us

much about what .NET is really about.

The .NET Framework is a platform for building and running applications

(Prosise, 2002). As its core, the framework has a common language

runtime (CLR) and the .NET Framework class library (FCL). (Robinson,

2001)

The CLR is like a virtual machine that abstracts operating

system services and serves as an execution engine for managed

1 http://www.microsoft.com/net/basics/

Senior Seminar
Jorge Campos

 2

applications. The FCL is a library of classes that provides the object-

oriented API that managed applications write to. When writing .NET

Framework applications, all the Windows API, and technologies like

MFC, ATL and COM are left behind and the FCL is used instead

(Prosise, 2002).

The framework brings a new API for programming on Windows, totally

apart from all the technologies that had been evolving during the

years and that suffered the burden of trying to maintain backward

compatibility with its predecessor technologies (Robinson, 2001).

Why .NET?

"A running program is often referred to as a virtual machine - a machine that
doesn't exist as a matter of actual physical reality. The virtual machine idea is
itself one of the most elegant in the history of technology and is a crucial step
in the evolution of ideas about software. To come up with it, scientists and
technologists had to recognize that a computer running a program isn't merely
a washer doing laundry. A washer is a washer whatever clothes you put inside,
but when you put a new program in a computer, it becomes a new machine....
The virtual machine: A way of understanding software that frees us to think of
software design as machine design."
From David Gelernter's "Truth, Beauty, and the Virtual Machine," Discover Magazine, September 1997, p. 72.

It didn’t take long before somebody realized that the idea of the virtual

machine could be applied to a whole operating system. This idea is

what’s behind technologies like the Java Virtual Machine developed by

Sun Microsystems. There are many advantages of abstracting a whole

operating system, for example portability and ease of design for

software targeted for the virtual OS.

In today’s world of massive information sharing and radical hardware

technology changes, it becomes really handy to have common

platforms for running software that are not tied to a particular kind of

hardware.

The .NET framework is Microsoft’s respond to this need for abstraction

of a virtual operating system.

Senior Seminar
Jorge Campos

 3

.NET Framework Components

The first component of the framework is a library, an API as extensive

as the Windows API. This API can be used to call up all the same sorts

of features that have traditionally been the role of the Windows

operating system, for example: displaying of dialog boxes, windows,

creating threads, etc (Petzold, 1998).

In addition to the basic functionality, the API addresses newer areas

such as database access and web service providing. Unlike prior

Windows APIs which consisted of huge sets of C function calls, the

.NET library is fully object oriented. It is exposed as a set of objects,

each of which implements a number of methods (Prosise, 2002).

The second component that completes the framework is the

environment in which the programs run. This environment is known as

the Common Language Runtime (CLR). When a program intended for

the .NET framework is executed, it will be the .NET runtime which

starts up the code, manages the running threads, provides various

background services, and in a real sense is the immediate

environment seen by the program. Therefore the .NET framework from

the code point of view is an abstraction of the operating system.2 The

code that runs under the CLR is referred as “managed code”. The CLR

also provides means for “managed code” to interact with pieces of

“unmanaged code” that don’t run under the framework’s boundaries.

Another important feature of the CLR is its garbage collector which

constitutes the .NET’s answer to memory management, and in

2 http://www.microsoft.com/net/basics/framework.asp

Senior Seminar
Jorge Campos

 4

particular to reclaiming memory that is not longer needed by running

applications.3

Advantages of the .NET framework

1. Object Oriented Programming

The .NET framework and C# are entirely based on object oriented

principles right from the start (Ritchter, 2002). In particular, the

framework’s library is a library of classes instead of a library of

functions. The classes can be instantiated and their member methods

can be called. These object orientation makes it easier to write well

structured and maintainable code.

2. Language Independence and Interoperability

Although in the past COM components could communicate with each

other no matter which COM aware languages each one had been

written in, there was still a gap between Visual Basic, Visual J++ and

Visual C++. The data types were different, and making a COM

component available to any language meant putting severe restrictions

on its method signatures, often in a way that would affect

performance. And it was certainly not possible to mix the various

languages in the same code module. With .NET all of this has changed,

in the framework, all languages compile to a common subset called the

Intermediate Language (IL). In this sense .NET Framework is

language-agnostic. It matters little what language is chosen to write

code targeted to run under .NET, because in the end all languages

exercise the same set of features in the Framework.

3
http://msdn.microsoft.com/netframework/using/understanding/netframework/default.aspx?pull=/library/en-
us/dnnetdep/html/sidexsidenet.asp

Senior Seminar
Jorge Campos

 5

.NET has common type specification, which means that the

Intermediate Language comes with a set of predefined data types that

are shared among all languages targeting the framework. The reason

why the common type specification is important for language

interoperability is that if a class is to derive from another class or

contains instances of other classes; it needs to know about all data

types used by these other classes, even if they were written in a

different language (Prosise, 2002).

3. End to the “DLL Hell”

When first introduced, Dynamic link libraries (DLLs) presented a great

way of saving disk space and memory and allowed different processes

to share code. In time it has become apparent that DLLs have also

given rise to a number of problems, largely due to both their lack of

any formal system for versioning, and the fact that newer versions of a

DLL usually overwrite older versions (Petzold, 1998).

The problem rises when some software overwrites a shared DLL with

an updated version. If the updated version turns out not to be fully

backward compatible, the result is that existing software on the

machine that used the same DLL may no longer work.

In the .NET framework the way code is shared between applications

has been completely revamped with the introduction of the concept of

the “assembly”, which replaces the traditional DLL. Assemblies have

formal facilities for versioning, and most important, different versions

of the same assembly can co-exist in the same system (Macdonald,

2001).

Senior Seminar
Jorge Campos

 6

4. C#

C# is the programming language most commonly associated with

programming for the .NET framework. The C# compiler specifically

targets .NET. The architecture and methodologies of C# reflect the

underlying methodologies of .NET. For example, C# is based around

single inheritance of classes, and has a type system that is based on

the distinction between value and reference types, just as is the case

for .NET. In many cases, specific language features of C# actually

depend on features of .NET’s base classes. One example of this is that

all the basic data types in C# - int, float, string, etc are actually .NET

base class types, which C# simply represents using a more convenient

syntax (Robinson, 2001).

C# is a modern language because it supports the notion of data types,

flow of control statements, operators, arrays, properties and

exceptions. It is also an object-oriented language because it supports

the notion of classes and their nature including encapsulation,

inheritance and polymorphism. The notion of indexers is also

supported in C#, allowing the manipulation of objects as arrays.

Another important feature in C# is the introduction of delegates which

can be described as method callbacks (Robinson, 2001).

Compilation and execution of code

Before the program can be run it must be compiled, and the compiled

code presumably shipped. However, unlike previous executable and

DLL files, the compiled code does not contain assembly language

instructions. Rather, it contains instructions in Microsoft Intermediate

Language (MSIL or simply IL).

Senior Seminar
Jorge Campos

 7

IL has some similarities with the ideas of Java byte code. It is fairly

low level language that has been designed, so it can be very rapidly

converted into native machine code by a just-in-time (JIT) compiler

(Prosise, 2002).

The compiled program consists of a number of assemblies. Each

assembly contains the IL code, but it also contains metadata that

describes the data types and methods in each assembly. The metadata

also includes a simple hash of the assembly contents, which can be

used to verify that the integrity of the assembly; it also includes

version information and details of other assemblies that are called

within the assembly (Ritchter, 2002).

The assembly that contains the main program entry point is marked as

executable while the others assemblies are designated as libraries.

When the program is executed, the .NET runtime first loads the

assembly containing the main entry point. It uses the hash to verify

the assembly’s integrity and it uses the metadata to check through the

defined types to ensure that it will be able to run the assembly

(Ritchter, 2002).

The CLR then actually runs the code. It creates a process for the code

to run in, and also marks out an application domain, in which it places

the program’s main thread. In some cases, a program may request

instead, to be placed in the same process as some other running

program, in which case the CLR will only create a new application

domain for it.

The CLR takes the first portion of code that it needs to run and compile

it from Intermediate Language into assembly language, and execute it

from the appropriate program thread. Each time execution flow enters

a new method that has not been executed before, that method will be

compiled into executable code. This compilation however will only take

Senior Seminar
Jorge Campos

 8

place once. Once the method has been compiled, the address of the

entry points to that method will be replaced by the address of the

compiled executable code. In this way, performance is maintained,

because only those portions of the code that are actually used will be

compiled. This process is known as just-in-time compiling. The JIT

compiler may - depending on the compilation settings specified in the

assembly-, optimize the code as is compiles, for example, by in lining

some methods.

While the code is running, the CLR monitors its memory usage. Based

on this monitoring it temporarily halts execution for short periods of

time at certain points and call up the garbage collector, which

examines the variables in the program in order to determine which

areas of memory are still actively being used by the code, so that it

can free up any unused areas (Robinson, 2001).

References

[Prosise, 2002] J. Prosise, “Programming Microsoft .NET (core
reference),” Microsoft Press. ISBN 0-7356-1376-1

[Petzold, 1998] C. Petzold, “Programming Windows,” Microsoft Press.
5th Ed. ISBN 1-57231-995-X

[Ritchter, 2002] J. Ritchter, “Applied Microsoft .NET Framework
Programming,” Microsoft Press. ISBN 0-7356-1422-9

[Robinson, 2001] S. Robinson et al, “Professional C#”, Wrox Press,
2001. ISBN 0-7645-4398-9

[Macdonald, 2001] R. Macdonald, “Understanding Assemblies”, Visual
Basic Developer magazine July 2001. Pinnacle Publishing, Inc.

