(Latest Revision: Thu Mar 18 13:38:54 PDT 2021 )
Original list - the edges of a connected, undirected graph {6, 7} 1 {1, 6} 2 {1, 7} 3 {4, 7} 4 {1, 4} 5 {5, 7} 6 {4, 5} 7 {5, 6} 8 {2, 3} 9 {3, 5} 10 {2, 5} 11 {1, 2} 12 {2, 7} 13 {3, 6} 14 {2, 4} 15 Execution of Kruskal's Algorithm, showing the disjoint sets {6, 7} 1 accept {6,7} {1} {2} {3} {4} {5} {1, 6} 2 accept {1,6,7} {2} {3} {4} {5} {1, 7} 3 reject {1,6,7} {2} {3} {4} {5} {4, 7} 4 accept {1,4,6,7} {2} {3} {5} {1, 4} 5 reject {1,4,6,7} {2} {3} {5} {5, 7} 6 accept {1,4,5,6,7} {2} {3} {4, 5} 7 reject {1,4,5,6,7} {2} {3} {5, 6} 8 reject {1,4,5,6,7} {2} {3} {2, 3} 9 accept {1,4,5,6,7} {2,3} {3, 5} 10 accept {1,2,3,4,5,6,7} {2, 5} 11 {1, 2} 12 {2, 7} 13 {3, 6} 14 {2, 4} 15 Kruskal List The 6 accepted edges that form the min cost spanning tree, in the order found, are: {6, 7} 1 {1, 6} 2 {4, 7} 4 {5, 7} 6 {2, 3} 9 {3, 5} 10 The cost of the tree is 1+2+4+6+9+10 = 32 Execution of Prim's Algorithm, using the ordered list as an aid {6, 7} 1 Prim #2 (cheapest edge leaving S={1,6}) Now S = {1,6,7} {1, 6} 2 Prim #1 (cheapest edge leaving S={1}) Now S = {1,6} {1, 7} 3 {4, 7} 4 Prim #3 (cheapest edge leaving S={1,6,7}) Now S = {1,4,6,7} {1, 4} 5 {5, 7} 6 Prim #4 (cheapest edge leaving S={1,4,6,7}) Now S = {1,4,5,6,7} {4, 5} 7 {5, 6} 8 {2, 3} 9 Prim #6 (cheapest edge leaving S={1,3,4,5,6,7}) Now S = {1,2,3,4,5,6,7} {3, 5} 10 Prim #5 (cheapest edge leaving S={1,4,5,6,7}) Now S = {1,3,4,5,6,7} {2, 5} 11 {1, 2} 12 {2, 7} 13 {3, 6} 14 {2, 4} 15 Prim List The 6 accepted edges that form the min cost spanning tree, in the order found, are: {1, 6} 2 {6, 7} 1 {4, 7} 4 {5, 7} 6 {3, 5} 10 {2, 3} 9 The cost of the tree is 2+1+4+6+10+9 = 32