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Divide-and-Conquer

Divide-and-conquer.

! Break up problem into several parts.

! Solve each part recursively.

! Combine solutions to sub-problems into overall solution.

Most common usage.

! Break up problem of size n into two equal parts of size !n.

! Solve two parts recursively.

! Combine two solutions into overall solution in linear time.

Consequence.

! Brute force:  n2.

! Divide-and-conquer:  n log n. Divide et impera.
Veni, vidi, vici.
        - Julius Caesar

5.1  Mergesort
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Obvious sorting applications.

! List files in a directory.

! Organize an MP3 library.

! List names in a phone book.

! Display Google PageRank results.

Problems become easier once sorted.

! Find the median.

! Find the closest pair.

! Binary search in a database.

! Identify statistical outliers.

! Find duplicates in a mailing list.

Non-obvious sorting applications.

! Data compression.

! Computer graphics.

! Interval scheduling.

! Computational biology.

! Minimum spanning tree.

! Supply chain management.

! Simulate a system of particles.

! Book recommendations on Amazon.

! Load balancing on a parallel computer.

. . .

Sorting

Sorting.  Given n elements, rearrange in ascending order.
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Mergesort

Mergesort.

! Divide array into two halves.

! Recursively sort each half.

! Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

! Linear number of comparisons.

! Use temporary array.

Challenge for the bored.  In-place merge.  [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution.  T(n) = O(n log2 n).

Assorted proofs.  We describe several ways to prove this recurrence.

Initially we assume n is a power of 2 and replace ! with =.

    

! 

T(n) "

 0 if  n =1

T n /2# $( )
solve left half

1 2 4 3 4 
+ T n /2% &( )

solve right half

1 2 4 3 4 
+ n

merging
{

otherwise

' 

( 
) 

* 
) 
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

    

! 

T(n) =

0 if  n =1

2T(n /2)

sorting both halves

1 2 4 3 4 
+ n

merging
{

otherwise

" 

# 
$ 

% 
$ 
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

    

! 

T(n)

n
=

2T(n /2)

n
+ 1

=
T(n /2)

n /2
+ 1

=
T(n / 4)

n / 4
+ 1 + 1

L

=
T(n /n)

n /n
+ 1 +L+ 1

log2 n

1 2 4 3 4 

= log2 n

    

! 

T(n) =

0 if  n =1

2T(n /2)

sorting both halves

1 2 4 3 4 
+ n

merging
{

otherwise

" 

# 
$ 

% 
$ 

assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)

! Base case:  n = 1.

! Inductive hypothesis:  T(n) =  n log2 n.

! Goal:  show that T(2n) =  2n log2 (2n).

  

! 

T(2n) = 2T(n)  +  2n

= 2n log2 n  +  2n

= 2n log2(2n)"1( )  +  2n

= 2n log2(2n)

assumes n is a power of 2

    

! 

T(n) =

0 if  n =1

2T(n /2)

sorting both halves

1 2 4 3 4 
+ n

merging
{

otherwise

" 

# 
$ 

% 
$ 
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)  ! n "lg n#.

Pf.   (by induction on n)

! Base case:  n = 1.

! Define n1 = $n / 2% ,  n2 = "n / 2#.

! Induction step:  assume true for 1, 2, ... , n–1.

  

! 

T(n) " T(n1)  +  T(n2 )  +  n

" n1 lgn1# $  +  n2 lg n2# $  +  n

" n1 lgn2# $  +  n2 lg n2# $  +  n

= n lgn2# $  +  n

" n( lgn# $%1 )  +  n

= n lgn# $

  

! 

n2 = n /2" #

$ 2
lgn" #

/ 2" #
= 2

lgn" #
/ 2

% lgn2 $ lgn" # &1

    

! 

T(n) "

 0 if  n =1

T n /2# $( )
solve left half

1 2 4 3 4 
+ T n /2% &( )

solve right half

1 2 4 3 4 
+ n

merging
{

otherwise

' 

( 
) 

* 
) 

log2n

5.3  Counting Inversions
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Music site tries to match your song preferences with others.

! You rank n songs.

! Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.

! My rank:  1, 2, …, n.

! Your rank:  a1, a2, …, an.

! Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all &(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2
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Applications

Applications.

! Voting theory.

! Collaborative filtering.

! Measuring the "sortedness" of an array.

! Sensitivity analysis of Google's ranking function.

! Rank aggregation for meta-searching on the Web.

! Nonparametric statistics  (e.g., Kendall's Tau distance).

15

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

! Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

! Divide:  separate list into two pieces.

! Conquer: recursively count inversions in each half.

! Combine: count inversions where ai and aj are in different halves,

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???
9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0

Counting Inversions:  Combine

Combine:  count blue-green inversions

! Assume each half is sorted.

! Count inversions where ai and aj are in different halves.

! Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

! 

T(n) "  T n /2# $( ) + T n /2% &( ) + O(n) ' T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count]  A and B are sorted.

Post-condition.  [Sort-and-Count]  L is sorted.

Sort-and-Count(L) {

   if list L has one element

      return 0 and the list L

   Divide the list into two halves A and B

   (rA, A) ' Sort-and-Count(A)

   (rB, B) ' Sort-and-Count(B)

   (rB, L) ' Merge-and-Count(A, B)

   return r = rA + rB + r and the sorted list L

}



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest

Euclidean distance between them.

Fundamental geometric primitive.

! Graphics, computer vision, geographic information systems,

molecular modeling, air traffic control.

! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with &(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

L

26

Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

! Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.

! Divide:  draw vertical line L so that roughly !n points on each side.

! Conquer:  find closest pair in each side recursively.

! Combine:  find closest pair with one point in each side.

! Return best of 3 solutions.

12

21
8

L

seems like &(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < (.

12

21

( = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < (.

! Observation:  only need to consider points within ( of line L.

12

21

(

L

( = min(12, 21)

30

12

21

1

2

3

4
5

6

7

(

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < (.

! Observation:  only need to consider points within ( of line L.

! Sort points in 2(-strip by their y coordinate.

L

( = min(12, 21)

31

12

21

1

2

3

4
5

6

7

(

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < (.

! Observation:  only need to consider points within ( of line L.

! Sort points in 2(-strip by their y coordinate.

! Only check distances of those within 11 positions in sorted list!

L

( = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2(-strip, with

the ith smallest y-coordinate.

Claim.  If |i – j| ) 12, then the distance between

si and sj is at least (.

Pf.

! No two points lie in same !(-by-!( box.

! Two points at least 2 rows apart

have distance )  2(!().   !

Fact.  Still true if we replace 12 with 7.

(

27

29
30

31

28

26

25

(

!(

 2 rows

!(

!(

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

   Compute separation line L such that half the points

   are on one side and half on the other side.

   (1 = Closest-Pair(left half)
   (2 = Closest-Pair(right half)
   (  = min((1, (2)

   Delete all points further than ( from separation line L

   Sort remaining points by y-coordinate.

   Scan points in y-order and compare distance between

   each point and next 11 neighbors. If any of these

   distances is less than (, update (.

   return (.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.

! Each recursive returns two lists: all points sorted by y coordinate,

and all points sorted by x coordinate.

! Sort by merging two pre-sorted lists.

  

! 

T(n) " 2T n /2( ) + O(n) # T(n) = O(n logn)

  

! 

T(n) " 2T n /2( ) + O(n log n) # T(n)  =  O(n log2
n)

5.5  Integer Multiplication
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Integer Arithmetic

Add.  Given two n-digit integers a and b, compute a + b.

! O(n) bit operations.

Multiply.  Given two n-digit integers a and b, compute a " b.

! Brute force solution: &(n2) bit operations.

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

0

1

1

1

1

0

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

0100000000001011

1

0

1

1

1

1

1

0

0

*

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111

Add

Multiply
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To multiply two n-digit integers:

! Multiply four !n-digit integers.

! Add two !n-digit integers, and shift to obtain result.

Divide-and-Conquer Multiplication:  Warmup

    

! 

T(n)  =  4T n /2( )
recursive calls

1 2 4 3 4 
 +  "(n)

add, shift

1 2 3 
 #  T(n) ="(n

2
)

  

! 

x = 2
n / 2
" x

1
 +  x

0

y = 2
n / 2
" y

1
 +  y

0

xy = 2
n / 2
" x

1
+ x

0( ) 2
n / 2
" y

1
 + y

0( ) = 2
n
" x

1
y

1
 + 2

n / 2
" x

1
y

0
+ x

0
y

1( ) + x
0
y

0

assumes n is a power of 2
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To multiply two n-digit integers:

! Add two !n digit integers.

! Multiply three !n-digit integers.

! Add, subtract, and shift !n-digit integers to obtain result.

Theorem.  [Karatsuba-Ofman, 1962]  Can multiply two n-digit integers

in O(n1.585) bit operations.

Karatsuba Multiplication

  

! 

x = 2
n / 2
" x1  +  x0

y = 2
n / 2
" y1  +  y0

xy = 2
n
" x1y1  + 2

n / 2
" x1y0 + x0 y1( ) + x0 y0

= 2
n
" x1y1  + 2

n / 2
" (x1 + x0 ) (y1 + y0 )  # x1y1 # x0 y0( ) + x0 y0

    

! 

T(n) " T n /2# $( ) + T n /2% &( ) + T 1+ n /2% &( )
recursive calls

1 2 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 
+ '(n)

add, subtract, shift

1 2 4 3 4 

( T(n)  =  O(n
log 2 3

)  =  O(n1.585 )

A B CA C
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Karatsuba:  Recursion Tree

  

! 

T(n) =
0 if  n =1

3T(n /2)  +  n otherwise

" 
# 
$ 

n

3(n/2)

9(n/4)

3k (n / 2k)

3 lg n (2)

. . .

. . .

 T(n) 

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

. . .

. . .

  

! 

T(n) = n  3
2( )

k

k=0

log2 n

"  =  
3
2( )

1+ log2 n

#1

3
2
#1

 =   3n
log2 3 # 2 Matrix Multiplication
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.

Brute force.   &(n3) arithmetic operations.

Fundamental question.  Can we improve upon brute force?

Matrix Multiplication

  

! 

cij = a
ik

b
kj

k=1

n

"

    

! 

c
11

c
12

L c
1n

c
21

c
22

L c
2n

M M O M

c
n1

c
n2

L c
nn

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=

a
11

a
12

L a
1n

a
21

a
22

L a
2n

M M O M

a
n1

a
n2

L a
nn

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

(

b
11

b
12

L b
1n

b
21

b
22

L b
2n

M M O M

b
n1

b
n2

L b
nn

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
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Matrix Multiplication:  Warmup

Divide-and-conquer.

! Divide:  partition A and B into !n-by-!n blocks.

! Conquer:  multiply 8 !n-by-!n recursively.

! Combine:  add appropriate products using 4 matrix additions.

  

! 

C
11

= A
11
" B

11( )  +  A
12
" B

21( )
C

12
= A

11
" B

12( )  +  A
12
" B

22( )
C

21
= A

21
" B

11( )  +  A
22
" B

21( )
C

22
= A

21
" B

12( )  +  A
22
" B

22( )

  

! 

C
11

C
12

C
21

C
22

" 

# 
$ 

% 

& 
'  =  

A
11

A
12

A
21

A
22

" 

# 
$ 

% 

& 
'  (  

B
11

B
12

B
21

B
22

" 

# 
$ 

% 

& 
' 

    

! 

T(n) = 8T n /2( )
recursive calls

1 2 4 3 4 
 +  "(n

2
)

add, form submatrices

1 2 4 4 3 4 4 
# T(n) ="(n

3
)
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Matrix Multiplication:  Key Idea

Key idea.  multiply 2-by-2 block matrices with only 7 multiplications.

! 7 multiplications.

! 18 = 10 + 8 additions (or subtractions).

  

! 

P1 = A11 " (B12 # B22 )

P2 = (A11 + A12 ) " B22

P3 = (A21 + A22 ) " B11

P4 = A22 " (B21 # B11)

P5 = (A11 + A22 ) " (B11 + B22 )

P6 = (A12 # A22 ) " (B21 + B22 )

P7 = (A11 # A21) " (B11 + B12 )  

! 

C
11

= P
5

+ P
4
" P

2
+ P

6

C
12

= P
1

+ P
2

C
21

= P
3

+ P
4

C
22

= P
5

+ P
1
" P

3
" P

7

  

! 

C
11

C
12

C
21

C
22

" 

# 
$ 

% 

& 
'  =  

A
11

A
12

A
21

A
22

" 

# 
$ 

% 

& 
'  (  

B
11

B
12

B
21

B
22

" 

# 
$ 

% 

& 
' 
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Fast Matrix Multiplication

Fast matrix multiplication.  (Strassen, 1969)

! Divide:  partition A and B into !n-by-!n blocks.

! Compute: 14 !n-by-!n matrices via 10 matrix additions.

! Conquer:  multiply 7 !n-by-!n matrices recursively.

! Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.

! Assume n is a power of 2.

! T(n) = # arithmetic operations.

    

! 

T(n) = 7T n /2( )
recursive calls

1 2 4 3 4 
+ "(n

2
)

add, subtract

1 2 4 3 4 
# T(n) ="(n

log2 7
) = O(n

2.81
)
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Fast Matrix Multiplication in Practice

Implementation issues.

! Sparsity.

! Caching effects.

! Numerical stability.

! Odd matrix dimensions.

! Crossover to classical algorithm around n = 128.

Common misperception:  "Strassen is only a theoretical curiosity."

! Advanced Computation Group at Apple Computer reports 8x

speedup on G4 Velocity Engine when n ~ 2,500.

! Range of instances where it's useful is a subject of controversy.

Remark.  Can "Strassenize" Ax=b, determinant, eigenvalues, and other

matrix ops.
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Fast Matrix Multiplication in Theory

Q.  Multiply two 2-by-2 matrices with only 7 scalar multiplications?

A.  Yes!   [Strassen, 1969]

Q.  Multiply two 2-by-2 matrices with only 6 scalar multiplications?

A.  Impossible.  [Hopcroft and Kerr, 1971]

Q.  Two 3-by-3 matrices with only 21 scalar multiplications?

A.  Also impossible.

Q.  Two 70-by-70 matrices with only 143,640 scalar multiplications?

A.  Yes!   [Pan, 1980]

Decimal wars.

! December, 1979:  O(n2.521813).

! January, 1980:     O(n2.521801).

  

! 

" (n
log3 21) = O(n

2.77
)

  

! 

" (n
log70 143640 ) = O(n

2.80
)

  

! 

"(n
log2 6) = O(n

2.59
)

  

! 

"(n
log2 7 ) = O(n

2.81
)
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Fast Matrix Multiplication in Theory

Best known.  O(n2.376)   [Coppersmith-Winograd, 1987.]

Conjecture.  O(n2+*) for any * > 0.

Caveat.  Theoretical improvements to Strassen are progressively less

practical.


