

Chapter 8

NP and Computational Intractability

3

Basic genres.

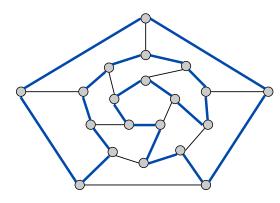
Packing problems: SET-PACKING, INDEPENDENT SET.

8.5 Sequencing Problems

- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

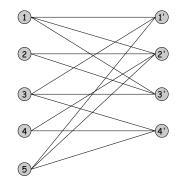
HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



NO: bipartite graph with odd number of nodes.

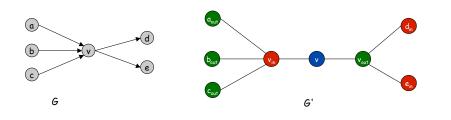
4

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE \leq_{P} HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.



Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- Suppose G has a directed Hamiltonian cycle Γ .
- Then G' has an undirected Hamiltonian cycle (same order).

Pf. ⇐

- Suppose G' has an undirected Hamiltonian cycle Γ' .
- Γ' must visit nodes in G' using one of following two orders:
 ..., B, G, R, B, G, R, B, G, R, B, ...
 - ..., B, R, G, B, R, G, B, R, G, B, ...
- Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one. \bullet

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT \leq_{P} DIR-HAM-CYCLE.

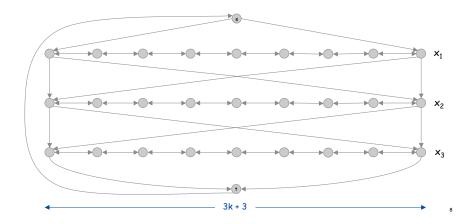
Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.

3-SAT Reduces to Directed Hamiltonian Cycle

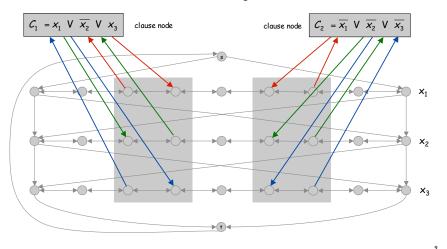
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.



3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses. $\mbox{ For each clause: add a node and 6 edges.}$



Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x*.
- Then, define Hamiltonian cycle in G as follows:
- if x*; = 1, traverse row i from left to right
- if x*; = 0, traverse row i from right to left
- for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice node C_i into tour

3-SAT Reduces to Directed Hamiltonian Cycle

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

- Suppose G has a Hamiltonian cycle Γ .
- If Γ enters clause node C_i , it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields
 Hamiltonian cycle on G { C_i }
- Continuing in this way, we are left with Hamiltonian cycle Γ' in $G \{C_1, C_2, \ldots, C_k\}$.
- Set $x_i^* = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node $C_{\rm j}$, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. \bullet

Longest Path

10

12

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. 3-SAT \leq_{P} LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE \leq_{P} LONGEST-PATH.

The Longest Path †

13

15

Lyrics. Copyright © 1988 by Daniel J. Barrett. Music. Sung to the tune of *The Longest Time* by Billy Joel.

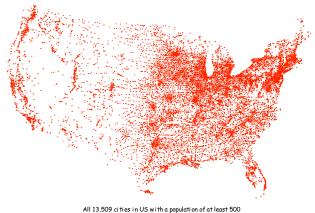
Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path!	I have been hard working for so long. I swear it's right, and he marks it wrong. Some how I'll feel sorry when it's done:
If you said P is NP tonight,	GPA 2.1
There would still be papers left to write,	Is more than I hope for.
I have a weakness,	
I'm addicted to completeness,	Garey, Johnson, Karp and other men (and women)
And I keep searching for the longest path.	Tried to make it order N log N.
	Am I a mad fool
The algorithm I would like to see	If I spend my life in grad school,
Is of polynomial degree,	Forever following the longest path?
But it's elusive:	
Nobody has found conclusive	Woh-oh-oh, find the longest path!
Evidence that we can find a longest path.	Woh-oh-oh, find the longest path!
	Woh-oh-oh, find the longest path.

t Recorded by Dan Barrett while a grad student at Johns Hopkins during a difficult algorithms final.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is

there a tour of length \leq D?

Traveling Salesperson Problem



All 13,509 cities in US with a population of at least 50 Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

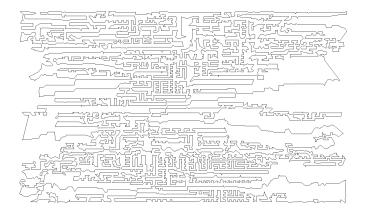
TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

14

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



Optimal TSP tour Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_{P} TSP.

Pf.

17

- Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$
- TSP instance has tour of length ≤ n iff G is Hamiltonian.

Remark. TSP instance in reduction satisfies Δ -inequality.

3-Dimensional Matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

Instructor	Course	Time
Wayne	COS 423	MW 11-12:20
Wayne	COS 423	TTh 11-12:20
Wayne	COS 226	TTh 11-12:20
Wayne	COS 126	TTh 11-12:20
Tardos	COS 523	TTh 3-4:20
Tardos	COS 423	TTh 11-12:20
Tardos	COS 423	TTh 3-4:20
Kleinberg	COS 226	TTh 3-4:20
Kleinberg	COS 226	MW 11-12:20
Kleinberg	CO5 423	MW 11-12:20

8.6 Partitioning Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

18

3-Dimensional Matching

3D-MATCHING. Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Claim. $3-SAT \leq_{P} INDEPENDENT-COVER$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

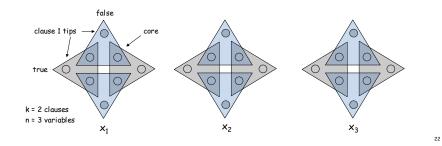
3-Dimensional Matching

Construction. (part 1)

number of clauses

- Create gadget for each variable x_i with 2k core and tip elements.
- No other triples will use core elements.
- In gadget i, 3D-matching must use either both grey triples or both blue ones.

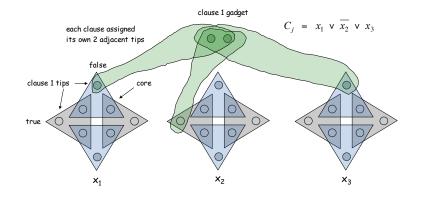
 [†]
 [†]
 set x, = true
 set x, = true
 set x, = false
 set x, = true
 set x, = true



3-Dimensional Matching

Construction. (part 2)

- For each clause C_i create two elements and three triples.
- . Exactly one of these triples will be used in any 3D-matching.
- Ensures any 3D-matching uses either (i) grey core of x₁ or (ii) blue core of x₂ or (iii) grey core of x₃.



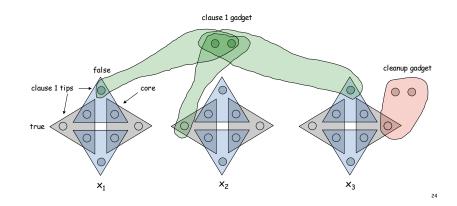
3-Dimensional Matching

Construction. (part 3)

21

23

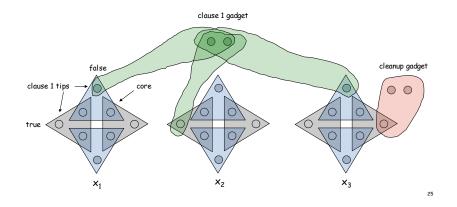
• For each tip, add a cleanup gadget.



3-Dimensional Matching

Claim. Instance has a 3D-matching iff Φ is satisfiable.

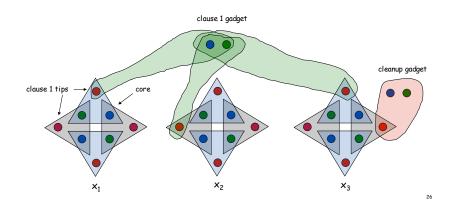
Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?



3-Dimensional Matching

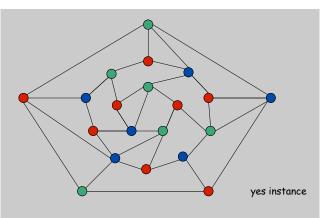
Claim. Instance has a 3D-matching iff Φ is satisfiable.

Detail. What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?



3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?



Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.

8.7 Graph Coloring

- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_{P} k-REGISTER-ALLOCATION for any constant $k \geq 3$.

3-Colorability

Claim. $3-SAT \leq P 3$ -COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

29

31

- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

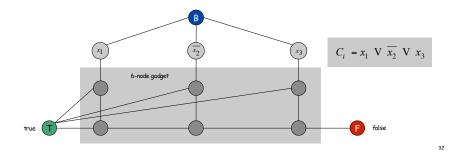
- Pf. \Rightarrow Suppose graph is 3-colorable.
- . Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.

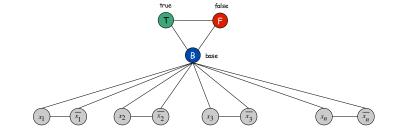
3-Colorability

30

Claim. Graph is 3-colorable iff Φ is satisfiable.

- Pf. \Rightarrow Suppose graph is 3-colorable.
- . Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

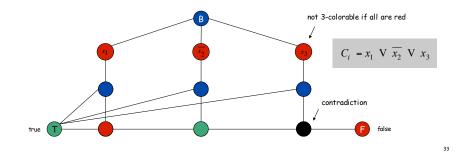




3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

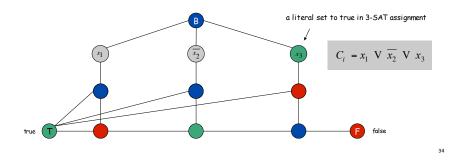
- Pf. \Rightarrow Suppose graph is 3-colorable.
- . Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.



3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

- Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. •



Subset Sum

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

Ex: { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754. Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in binary encoding.

Claim. 3-SAT \leq_{P} SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.

8.8 Numerical Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Subset Sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n + 2k decimal integers, each of n+k digits, as illustrated below.

Claim. Φ is satisfiable iff there exists a subset that sums to W. Pf. No carries possible.

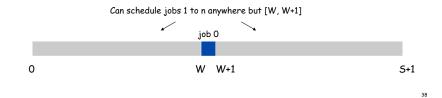
		×	У	z	C_1	C2	<i>C</i> ₃		
	×	1	0	0	0	1	0	100,110	
	¬ x	1	0	0	1	0	1	100,001	
$C_1 = \overline{x} \lor y \lor z$	У	0	1	0	1	0	0	10,000	
	¬ y	0	1	0	0	1	1	10,111	
$C_2 = x \lor \overline{y} \lor z$	z	0	0	1	1	1	0	1,010	
$C_3 = \overline{x} \vee \overline{y} \vee \overline{z}$	¬ z	0	0	1	0	0	1	1,101	
	ſ	0	0	0	1	0	0	100	
		0	0	0	2	0	0	200	
dummies to	get 🔶	0	0	0	0	1	0	10	
clause colum	ins j	0	0	0	0	2	0	20	
to sum to 4		0	0	0	0	0	1	1	
		0	0	0	0	0	2	2	
	w	1	1	1	4	4	4	111,444	
									37

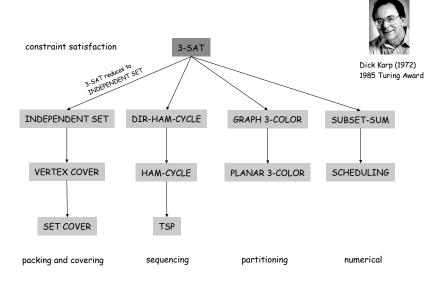
Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time t_i , release time r_i , and deadline d_i , is it possible to schedule all jobs on a single machine such that job i is processed with a contiguous slot of t_i time units in the interval $[r_i, d_i]$?

Claim. SUBSET-SUM \leq_{P} SCHEDULE-RELEASE-TIMES.

- Pf. Given an instance of SUBSET-SUM $w_1, ..., w_n$, and target W,
- Create n jobs with processing time $t_i = w_i$, release time $r_i = 0$, and no deadline $(d_i = 1 + \Sigma_i w_i)$.
- Create job 0 with $t_0 = 1$, release time $r_0 = W$, and deadline $d_0 = W+1$.





8.10 A Partial Taxonomy of Hard Problems

Subset Sum (proof from book)

Extra Slides

Construction. Let $X \cup Y \cup Z$ be a instance of 3D-MATCHING with triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.

- Let X = { x_1, x_2, x_3, x_4 }, Y = { y_1, y_2, y_3, y_4 }, Z = { z_1, z_2, z_3, z_4 }
- For each triplet t= $(x_i, y_j, z_k) \in T$, create an integer w_t with 3n digits that has a 1 in positions i, n+j, and 2n+k. use base m+1

Claim. 3D-matching iff some subset sums to W = 111,..., 111.

Triplet t _i		X_1	×2	X ₃	×4	Y ₁	Y ₂	У 3	У 4	z ₁	z ₂	z ₃	z ₄	w _i	
x ₁	Y ₂	z ₃	1	0	0	0	0	1	0	0	0	0	1	0	100,001,000,010
x ₂	Y ₄	z ₂	0	1	0	0	0	0	0	1	0	1	0	0	10,000,010,100
×1	Y ₁	z ₁	1	0	0	0	1	0	0	0	1	0	0	0	100,010,001,000
x ₂	Y ₂	z ₄	0	1	0	0	0	1	0	0	0	0	0	1	10,001,000,001
×4	y ₃	z ₄	0	0	0	1	0	0	1	0	0	0	0	1	100,100,001
x ₃	Y ₁	z ₂	0	0	1	0	1	0	0	0	0	1	0	0	1,010,000,100
x ₃	Y ₁	z ₃	0	0	1	0	1	0	0	0	0	0	1	0	1,010,000,010
x ₃	Y ₁	z ₁	0	0	1	0	1	0	0	0	1	0	0	0	1,010,001,000
x ₄	y ₄	z ₄	0	0	0	1	0	0	0	1	0	0	0	1	100,010,001
															111,111,111,111

Partition

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers $v_1,\,...,\,v_m$, can they be partitioned into two subsets that add up to the same value?

 $\frac{1}{2} \Sigma_i V_i$

43

Claim. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let $W, w_1, ..., w_n$ be an instance of SUBSET-SUM.

- Create instance of PARTITION with m = n+2 elements.
- $v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \Sigma_i w_i W, v_{n+2} = \Sigma_i w_i + W$
- There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition.

$v_{n+1} = 2 \Sigma_i w_i - W$	W	subset A
$v_{n+2} = \Sigma_i w_i + W$	$\Sigma_i \mathbf{w}_i - \mathbf{W}$	subset B

Extra Slides: 4 Color Theorem

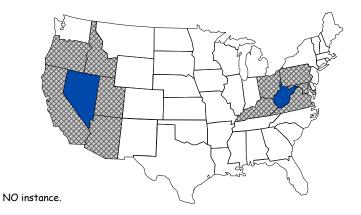
Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



Planarity

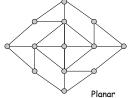
Planarity Testing

46

48

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.



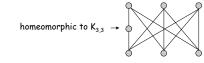
45

47

K₅: non-planar

K_{3,3}: non-planar

Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.



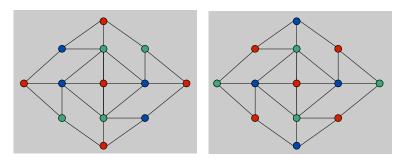
Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Planar 3-Colorability

Claim. 3-COLOR $\leq P$ PLANAR-3-COLOR.

Proof sketch: Given instance of 3-COLOR, draw graph in plane, letting edges cross if necessary.

- Replace each edge crossing with the following planar gadget W.
 - in any 3-coloring of W, opposite corners have the same color
 - any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W



49

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

