

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

Copyright © 2013 Kevin Wayne
http: / / www.cs.princeton.edu / ~wayne/kleinberg-tardos

8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.1

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
partitioning problems
- graph coloring
- numerical problems

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.
- PSPACE-completeness. $O\left(n^{k}\right)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

von Neumann (1953)

Gödel
(1956)

Cobham (1964)

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes	probably no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colorability	planar 3-colorability
bipartite vertex cover	vertex cover
matching	3d-matching
primality testing	factoring
linear programming	

Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?
using forced capture rule

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.
computational model supplemented by special piece of hardware that solves instances of Y in a single step

Algorithm for X

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{P} Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don't mistake $X \leq_{P} Y$ with $Y \leq{ }_{P} X$.

Polynomial-time reductions

Design algorithms. If $X \leq_{P} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_{P} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_{P} Y$ and $Y \leq_{P} X$, we use notation $X \equiv_{P} Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Section 8.1

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
, graph coloring
- numerical problems

Independent set

Independent-Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

Vertex cover

Vertex-Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

independent set of size 6
vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

independent set of size 6 vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Rightarrow

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge (u, v).
- S independent \Rightarrow either $u \notin S$ or $v \notin S$ (or both)
\Rightarrow either $u \in V-S$ or $v \in V-S$ (or both).
- Thus, $V-S$ covers (u, v).

Vertex cover and independent set reduce to one another

Theorem. Vertex-Cover \equiv_{p} Independent-Set.
Pf. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Leftarrow

- Let $V-S$ be any vertex cover of size $n-k$.
- S is of size k.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V-S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set. -

Set cover

Set-Cover. Given a set U of elements, a collection $S_{1}, S_{2}, \ldots, S_{m}$ of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U ?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The $i^{\text {th }}$ piece of software provides the set $S_{i} \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{1}=\{3,7\} & S_{4}=\{2,4\} \\
S_{2}=\{3,4,5,6\} & S_{5}=\{5\} \\
\begin{array}{ll}
S_{3}=\{1\} & S_{6}=\{1,2,6,7\} \\
k=2 &
\end{array}
\end{array}
$$

Vertex cover reduces to set cover

Theorem. Vertex-Cover $\leq{ }_{P}$ Set-Cover.
Pf. Given a Vertex-Cover instance $G=(V, E)$, we construct a Set-Cover instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U=E$.
- Include one set for each node $v \in V: S_{v}=\{e \in E: e$ incident to $v\}$.

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

$$
(k=2)
$$

Vertex cover reduces to set cover

Lemma. $G=(V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y=\left\{S_{v}: v \in X\right\}$ is a set cover of size k. -

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
\hline
\end{array}
$$

set cover instance
($k=2$)

Vertex cover reduces to set cover

Lemma. $G=(V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \Leftarrow Let $Y \subseteq S$ be a set cover of size k in (U, S).

- Then $X=\left\{v: S_{v} \in Y\right\}$ is a vertex cover of size k in G. -

vertex cover instance

$$
(k=2)
$$

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
\hline
\end{array}
$$

set cover instance
($k=2$)

Section 8.2

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Satisfiability

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

$$
x_{i} \text { or } \overline{x_{i}}
$$

$$
C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}
$$

Conjunctive normal form. A propositional $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$ formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{l}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

$$
\text { yes instance: } x_{1}=\text { true, } x_{2}=\text { true, } x_{3}=\text { false, } x_{4}=\text { false }
$$

Key application. Electronic design automation (EDA).

3-satisfiability reduces to independent set

Theorem. 3-SAT \leq_{P} INDEPENDENT-SET.
Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

G

$k=3$

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k=|\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.

- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.
$\operatorname{Pf} \Leftarrow$ Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k. -

G

$k=3$

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(\begin{array}{ll}
\left.x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
\end{array}\right.
$$

Review

Basic reduction strategies.

- Simple equivalence: Independent-Set \equiv_{P} Vertex-Cover.
- Special case to general case: Vertex-Cover \leq_{P} Set-Cover.
- Encoding with gadgets: $3-$ SAT \leq_{P} INDEPENDENT-SET.

Transitivity. If $X \leq_{P} Y$ and $Y \leq_{P} Z$, then $X \leq_{P} Z$. Pf idea. Compose the two algorithms.

Ex. 3-Sat \leq_{p} Independent-Set \leq_{p} Vertex-Cover \leq_{P} Set-Cover.

Search problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.

Ex. To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq k-1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k-1$ in $G-\{v\}$.
delete v and all incident edges

Bottom line. Vertex-Cover $\equiv{ }_{P}$ Find-Vertex-Cover.

Optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.
Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:

- (Binary) search for size k^{*} of min vertex cover.
- Solve corresponding search problem.

Bottom line. Vertex-Cover $\equiv{ }_{P}$ Find-Vertex-Cover $\equiv{ }_{P}$ Optimal-Vertex-Cover.

Section 8.5

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Hamilton cycle

Ham-Cycle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

Hamilton cycle

HAM-Cycle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

no

Directed hamilton cycle reduces to hamilton cycle

Dir-Ham-CyCle: Given a digraph $G=(V, E)$, does there exist a simple directed cycle Γ that contains every node in V ?

Theorem. Dir-Ham-CyCLE $\leq{ }_{P}$ HAM-CyCLE.

Pf. Given a digraph $G=(V, E)$, construct a graph G^{\prime} with $3 n$ nodes.

G

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G^{\prime} has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

- Suppose G^{\prime} has an undirected Hamilton cycle Γ^{\prime}.
- Γ^{\prime} must visit nodes in G^{\prime} using one of following two orders:
$\ldots, B, G, R, B, G, R, B, G, R, B, \ldots$
$\ldots, B, R, G, B, R, G, B, R, G, B, \ldots$
- Blue nodes in Γ^{\prime} make up directed Hamilton cycle Γ in G, or reverse of one.

3-satisfiability reduces to directed hamilton cycle

Theorem. 3 -SAT \leq_{P} DIR-HAM-CyCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of Dir-Ham-Cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^{n} Hamilton cycles which correspond in a natural way to 2^{n} possible truth assignments.

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- Construct G to have 2^{n} Hamilton cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_{i}=$ true .

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause, add a node and 6 edges.

3-satisfiability reduces to directed hamilton cycle

Lemma. $\quad \Phi$ is satisfiable iff G has a Hamilton cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x^{*}.
- Then, define Hamilton cycle in G as follows:
- if $x^{*}{ }_{i}=$ true, traverse row i from left to right
- if $x^{*}{ }_{i}=$ false, traverse row i from right to left
- for each clause C_{j}, there will be at least one row i in which we are going in "correct" direction to splice clause node C_{j} into cycle (and we splice in C_{j} exactly once)

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. \Leftarrow

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_{j}, it must depart on mate edge.
- nodes immediately before and after C_{j} are connected by an edge $e \in E$
- removing C_{j} from cycle, and replacing it with edge e yields Hamilton cycle on $G-\left\{C_{j}\right\}$
- Continuing in this way, we are left with a Hamilton cycle Γ^{\prime} in $G-\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$.
- Set $x^{*}{ }_{i}=$ true iff Γ^{\prime} traverses row i left to right.
- Since Γ visits each clause node C_{j}, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. -

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph $G=(V, E)$, does there exists a simple path consisting of at least k edges?

Theorem. 3 -SAT $\leq{ }_{P}$ LONGEST-PATH.

Pf 1. Redo proof for Dir-Ham-CyCLE, ignoring back-edge from t to s.
Pf 2. Show Ham-Cycle \leq_{P} Longest-Path.

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

13,509 cities in the United States
http:/ /www.tsp.gatech.edu

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

optimal TSP tour
http:/ /www.tsp.gatech.edu

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

optimal TSP tour
http:/ /www.tsp.gatech.edu

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CyCle. Given an undirected graph $G=(V, E)$, does there exist a simple cycle Γ that contains every node in V ?

Theorem. HAM-CYCLE \leq_{P} TSP.
Pf.

- Given instance $G=(V, E)$ of HAM-CYCLE, create n cities with distance function

$$
d(u, v)= \begin{cases}1 & \text { if }(u, v) \in E \\ 2 & \text { if }(u, v) \notin E\end{cases}
$$

- TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle. -

Remark. TSP instance satisfies triangle inequality: $d(u, w) \leq d(u, v)+d(v, w)$.

Polynomial-time reductions

Section 8.6

8. Intractability I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-dimensional matching

3D-MATChing. Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

instructor	course	time
Wayne	$\cos 226$	TTh 11-12:20
Wayne	$\cos 423$	MW 11-12:20
Wayne	$\cos 423$	TTh 11-12:20
Tardos	$\cos 423$	TTh 3-4:20
Tardos	$\cos 523$	TTh 3-4:20
Kleinberg	$\cos 226$	TTh 3-4:20
Kleinberg	$\cos 226$	MW 11-12:20
Kleinberg	$\cos 423$	MW 11-12:20

3-dimensional matching

3d-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$
\begin{array}{llll}
X=\left\{x_{1}, x_{2}, x_{3}\right\}, & Y=\left\{y_{1}, y_{2}, y_{3}\right\}, & Z=\left\{z_{1}, z_{2}, z_{3}\right\} \\
T_{1}=\left\{x_{1}, y_{1}, z_{2}\right\}, & T_{2}=\left\{x_{1}, y_{2}, z_{1}\right\}, & T_{3}=\left\{x_{1}, y_{2}, z_{2}\right\} \\
T_{4}=\left\{x_{2}, y_{2}, z_{3}\right\}, & T_{5}=\left\{x_{2}, y_{3}, z_{3}\right\}, & \\
T_{7}=\left\{x_{3}, y_{1}, z_{3}\right\}, & T_{8}=\left\{x_{3}, y_{1}, z_{1}\right\}, & T_{9}=\left\{x_{3}, y_{2}, z_{1}\right\}
\end{array}
$$

an instance of $3 \mathbf{d}$-matching (with $\mathbf{n}=3$)

Remark. Generalization of bipartite matching.

3-dimensional matching

3d-Matching. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

Theorem. 3-SAT \leq_{P} 3D-MATCHING.
Pf. Given an instance Φ of 3 -SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff Φ is satisfiable.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1) $\swarrow^{\text {number of clauses }}$

- Create gadget for each variable x_{i} with $2 k$ core elements and $2 k$ tip ones.

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_{i} with $2 k$ core elements and $2 k$ tip ones.
- No other triples will use core elements.
- In gadget for x_{i}, any perfect matching must use either all gray triples (corresponding to $x_{i}=$ true) or all blue ones (corresponding to $x_{i}=$ false).

3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)

- Create gadget for each clause C_{j} with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_{1} or (ii) blue core of x_{2} or (iii) grey core of x_{3}.
clause 1 gadget

3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)

- There are $2 n k$ tips: $n k$ covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1) k$ tips, create $(n-1) k$ cleanup gadgets: same as clause gadget but with $2 n k$ triples, connected to every tip.

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
Q. What are X, Y, and Z ?

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.
Q. What are X, Y, and Z ?
A. $X=$ red, $Y=$ green, and $Z=$ blue.

3-satisfiability reduces to 3 -dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Pf. \Rightarrow If 3d-matching, then assign x_{i} according to gadget x_{i}.
Pf. \Leftarrow If Φ is satisfiable, use any true literal in C_{j} to select gadget C_{j} triple. •

Section 8.7

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

3-colorability

3-Color. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?

yes instance

Application: register allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-Color \leq_{P} K-ReGister-Allocation for any constant $k \geq 3$.

3 -satisfiability reduces to 3 -colorability

Theorem. 3-SAT $\leq_{P} 3$-Color.

Pf. Given 3-Sat instance Φ, we construct an instance of 3-Color that is 3 -colorable iff Φ is satisfiable.

3 -satisfiability reduces to 3 -colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_{j}, add a gadget of 6 nodes and 13 edges.
to be described later

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

3 -satisfiability reduces to 3 -colorability

Lemma. Graph G is 3 -colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

Polynomial-time reductions

Section 8.8

8. INTRACTABILITY I

p poly-time reductions

- packing and covering problems
- constraint satisfaction problems
, sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Subset sum

SUBSET-SUM. Given natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Ex. $\{1,4,16,64,256,1040,1041,1093,1284,1344\}, W=3754$.
Yes. $1+16+64+256+1040+1093+1284=3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem. 3-SAT $\leq{ }_{P}$ SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of Subset-Sum that has solution iff Φ is satisfiable.

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2 n+2 k$ decimal integers, each of $n+k$ digits:

- Include one digit for each variable x_{i} and for each clause C_{j}.
- Include two numbers for each variable x_{i}.
- Include two numbers for each clause C_{j}.
- Sum of each x_{i} digit is 1 ; sum of each C_{j} digit is 4 .

Key property. No carries possible \Rightarrow each digit yields one equation.

	x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x_{3}	0	0	1	1	1	0	1,110
$\neg x_{3}$	0	0	1	0	0	1	1,001
	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. \Rightarrow Suppose Φ is satisfiable.

- Choose integers corresponding to each true literal.
- Since Φ is satisfiable, each C_{j} digit sums to at least 1 from x_{i} rows.
- Choose dummy integers to make clause digits sum to 4.

$$
\begin{aligned}
& C_{1}=\neg x_{1} \vee x_{2} \vee x_{3} \\
& C_{2}=x_{1} \vee \neg x_{2} \vee x_{3} \\
& C_{3}=\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

	x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x_{3}	0	0	1	1	1	0	1,110
$\neg x_{3}$	0	0	1	0	0	1	1,001
dummies to get clause columns to sum to 4	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2
	1	1	1	4	4	4	111,444
			ET-S	um in	tanc		

3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.
Pf. \Leftarrow Suppose there is a subset that sums to W.

- Digit x_{i} forces subset to select either row x_{i} or $\neg x_{i}$ (but not both).
- Digit C_{j} forces subset to select at least one literal in clause.
- Assign $x_{i}=$ true iff row x_{i} selected.

-		x_{1}	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
	x_{1}	1	0	0	0	1	0	100,010
	$\neg x_{1}$	1	0	0	1	0	1	100,101
	x_{2}	0	1	0	1	0	0	10,100
	$\neg x_{2}$	0	1	0	0	1	1	10,011
	x_{3}	0	0	1	1	1	0	1,110
	$\neg x_{3}$	0	0	1	0	0	1	1,001
dummies to get clause columns to sum to 4	(0	0	0	1	0	0	100
		0	0	0	2	0	0	200
		0	0	0	0	1	0	10
		0	0	0	0	2	0	20
		0	0	0	0	0	1	1
	(0	0	0	0	0	2	2
	W	1	1	1	4	4	4	111,444

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

Randall Munro
http:/ /xkcd.com/c287.html

Partition

SUBSET-SUM. Given natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

PARTITION. Given natural numbers v_{1}, \ldots, v_{m}, can they be partitioned into two subsets that add up to the same value $1 / 2 \Sigma_{i} v_{i}$?

Theorem. SUBSET-SUM $\leq{ }_{P}$ PARTITION.
Pf. Let W, w_{1}, \ldots, w_{n} be an instance of SUbSEt-Sum.

- Create instance of Partition with $m=n+2$ elements.
- $v_{1}=w_{1}, v_{2}=w_{2}, \ldots, v_{n}=w_{n}, v_{n+1}=2 \Sigma_{i} w_{i}-W, v_{n+2}=\Sigma_{i} w_{i}+W$
- Lemma: there exists a subset that sums to W iff there exists a partition since elements v_{n+1} and v_{n+2} cannot be in the same partition. -

$$
v_{n+1}=2 \Sigma_{i} w_{i}-W
$$

W
subset A
$v_{n+2}=\Sigma_{i} w_{i}+W$
$\Sigma_{i} w_{i}-W$
subset B

Scheduling with release times

Schedule. Given a set of n jobs with processing time t_{j}, release time r_{j}, and deadline d_{j}, is it possible to schedule all jobs on a single machine such that job j is processed with a contiguous slot of t_{j} time units in the interval $\left[r_{j}, d_{j}\right]$?

Ex.

Scheduling with release times

Theorem. Subset-Sum $\leq{ }_{P}$ SChedule.
Pf. Given SUBSET-SUM instance w_{1}, \ldots, w_{n} and target W, construct an instance of Schedule that is feasible iff there exists a subset that sums to exactly W.

Construction.

- Create n jobs with processing time $t_{j}=w_{j}$, release time $r_{j}=0$, and no deadline ($d_{j}=1+\Sigma_{j} w_{j}$).
- Create job 0 with $t_{0}=1$, release time $r_{0}=W$, and deadline $d_{0}=W+1$.
- Lemma: subset that sums to W iff there exists a feasible schedule. •

Polynomial-time reductions

Karp's 21 NP-complete problems

