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‣ Bellman-Ford algorithm 
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String similarity

Q.  How similar are two strings?

Ex.  ocurrance and occurrence.

3

6 mismatches, 1 gap

o c u r r a n c e –

o c c u r r e n c e

1 mismatch, 1 gap

o c – u r r a n c e

o c c u r r e n c e

0 mismatches, 3 gaps

o c – u r r – a n c e

o c c u r r e – n c e



Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

・Gap penalty δ; mismatch penalty αpq.

・Cost = sum of gap and mismatch penalties.

Applications.  Unix diff, speech recognition, computational biology, ...

Edit distance

4

cost = δ + αCG + αTA

C T – G A C C T A C G

C T G G A C G A A C G



Goal.  Given two strings x1 x2 ... xm and y1 y2 ... yn find min cost alignment.

Def.  An alignment M is a set of ordered pairs xi – yj such that each item 

occurs in at most one pair and no crossings.

Def.  The cost of an alignment M is:

Sequence alignment

  

€ 

cost(M ) = α xi y j
(xi , y j ) ∈ M
∑

mismatch
       

+ δ
i : xi  unmatched

∑ + δ
j : y j  unmatched

∑

gap
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C T A C C – G

– T A C A T G

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

M = { x2–y1, x3–y2, x4–y3, x5–y4, x6–y6 }
an alignment of CTACCG and TACATG:

xi – yj and xi' – yj' cross if i < i ', but j > j '



Sequence alignment:  problem structure

Def.  OPT(i, j) = min cost of aligning prefix strings x1 x2 ... xi and y1 y2 ... yj.

Case 1.  OPT matches xi – yj.

Pay mismatch for xi – yj  + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj–1. 

Case 2a.  OPT leaves xi unmatched.

Pay gap for xi + min cost of aligning x1 x2 ... xi–1 and y1 y2 ... yj. 

Case 2b.  OPT leaves yj unmatched.

Pay gap for yj + min cost of aligning x1 x2 ... xi and y1 y2 ... yj–1.

€ 

OPT (i, j) =

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

jδ if  i = 0

min  

α xi y j +OPT (i−1, j −1)

δ +OPT (i−1, j)
δ +OPT (i, j −1)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

otherwise

iδ if  j = 0

6

optimal substructure property
(proof via exchange argument)



Sequence alignment:  algorithm
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SEQUENCE-ALIGNMENT (m, n, x1, …, xm, y1, …, yn, δ, α)                          


FOR  i = 0 TO m
M [i, 0] ← i δ.

FOR  j = 0 TO n
M [0, j] ← j δ.

FOR  i = 1  TO  m
FOR  j = 1  TO  n

M [i, j] ← min { α[xi, yj] + M [i – 1, j – 1],
                           δ + M [i – 1, j],
                           δ + M [i, j – 1]).

RETURN M [m, n].




Sequence alignment:  analysis

Theorem.  The dynamic programming algorithm computes the edit distance 

(and optimal alignment) of two strings of length m and n in Θ(mn) time and 

Θ(mn) space.

Pf.

・Algorithm computes edit distance.

・Can trace back to extract optimal alignment itself.  ▪

Q.  Can we avoid using quadratic space?

A.  Easy to compute optimal value in O(mn) time and O(m + n) space.

・Compute OPT(i, •) from OPT(i – 1, •).

・But, no longer easy to recover optimal alignment itself.

8
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Sequence alignment in linear space

Theorem.  There exist an algorithm to find an optimal alignment in O(mn) 
time and O(m + n) space.

・Clever combination of divide-and-conquer and dynamic programming.

・Inspired by idea of Savitch from complexity theory.

Programming G. Manacher  
Techniques Editor 

A Linear Space 
Algorithm for 
Computing Maximal 
Common Subsequences 
D.S .  H i r s c h b e r g  
P r i n c e t o n  U n i v e r s i t y  

The problem of finding a longest common subse- 
quence of  two strings has been solved in quadratic time 
and space. An algorithm is presented which will solve 
this problem in quadratic time and in linear space. 

Key Words and Phrases: subsequence, longest 
common subsequence, string correction, editing 

CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25 

Introduction 

The problem of  finding a longest common subse- 
quence of two strings has been solved in quadratic time 
and space [1, 3]. For  strings of  length 1,000 (assuming 
coefficients of  1 microsecond and 1 byte) the solution 
would require 106 microseconds (one second) and 106 
bytes (1000K bytes). The former is easily accommo- 
dated, the latter is not so easily obtainable. I f  the 
strings were of length 10,000, the problem might not be 
solvable in main memory  for lack of space. 

We present an algorithm which will solve this prob- 
lem in quadratic time and in linear space. For  example, 
assuming coefficients of  2 microseconds and 10 bytes, 
for strings of  length 1,000 we would require 2 seconds 
and 10K bytes; for strings of  length 10,000 we would 
require a little over 3 minutes and 100K bytes. 

String C = c~c2 . . . cp  is a subsequence  of  string 
Copyright © 1975, Association for Computing Machinery, Inc. 

General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Research work was supported in part by NSF grant GJ-30126 
and National Science Foundation Graduate Felolwship. Author's 
address: Department of Electrical Engineering, Princeton Uni- 
versity, Princeton, NJ 08540. 

A = axa2 . . . am if and only if there is a mapping F: 
{1, 2, . . . ,  p} ~ {1, 2, . . . ,  m} such that f( i)  = k only 
if c~ is ak and F is a monotone  strictly increasing func- 
tion (i.e. F(i)  = u, F ( j )  = v, and i < j imply that  
u < v ) .  

String C is a c o m m o n  subsequence  of  strings A and B 
if and only if C is a subsequence of  A and C is a subse- 
quence of B. 

The problem can be stated as follows: Given strings 
A = aia.2.. "am and B = bxb2 . . . bn  (over alphabet Z), 
find a string C = ClC2. . .cp such that C, is a common 
subsequence of A and B and p is maximized. 

We call C an example of  a m a x i m a l  c o m m o n  subse-  
quence.  

Nota t ion .  For  string D = dld2. • • dr, Dk t is dkdk+l. • • d, 
i f k  < t ; d k d k _ x . . . d ,  i f k  >__ t. When k > t, we shall 
write ]3kt so as to make clear that we are referring to a 
"reverse substring" of  D. 

L(i ,  j )  is the maximum length possible of  any com- 
mon subsequence of Ax~ and B~s. 

x[ lY is the concatenation of strings x and y. 
We present the algorithm described in [3], which 

takes quadratic time and space. 

Algorithm A 

Algorithm A accepts as input strings A~m and Bx. 
and produces as output  the matrix L (where the ele- 
ment L(i ,  j )  corresponds to our notation of maximum 
length possible of  any common subsequence of Axl and 
B. ) .  

ALGA (m, n, A, B, L) 
1. Initialization: L(i, 0) ~ 0 [i=0...m]; 

L(O,j) +-- 0 [j=0...n]; 
2. for i +-- 1 to m do 

begin 
3. for j ~- 1 to n do 

if A (i) = B(j) then L(i, j )  ~- L(i--  1, j - -  1) "k 1 
else L(i , j )  ~-- max{L(i, j--1),  L(i-- I , j)} 

end 

Proof  of  Correctness of  Algorithm A 
To find L(i ,  j ) ,  let a common subsequence of that  

length be denoted by S(i ,  j )  = ClC2. . .cp.  I f  al = bj, 
we can do no better than by taking cp = a~ and looking 
for c l . . . c p _ l  as a common subsequence of  length 
L(i ,  j)  -- 1 of  strings AI,~-1 and B1.i-x. Thus, in this 
case, L ( i , j )  = L ( i -  1 , j -  1) -+- 1. 

I f  ai ~ bs, then cp is ai, b;, or neither (but not both). 
I f  cp is a~, then a solution C to problem (A~, B~j) [writ- 
ten P(i,  j)]  will be a solution to P(i ,  j - 1) since bj is 
not used. Similarly, if cp is bi, then we can get a solu- 
tion to P(i ,  j )  by solving P ( i  - -  1, j ) .  I f  c~ is neither, 
then a solution to either P( i  - -  1,j)  or P ( i , j  - -  1) will 
suffice. In determining the length of the solution, it is 
seen that L(i ,  j )  [corresponding to P(i,  j)]  will be the 
maximum o f L ( i - -  1 , j )  and L ( i , j - -  1). [] 

341 Communications June 1975 
of Volume 18 
the ACM Number 6 
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Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

Hirschberg's algorithm

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

0-0

δ

δ

  

€ 

αxi y j
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Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

Pf of Lemma.  [ by strong induction on i + j ]

・Base case:  f (0, 0) = OPT (0, 0) = 0.

・Inductive hypothesis: assume true for all (i', j') with  i' + j'  <  i + j.

・Last edge on shortest path to (i, j) is from (i – 1,  j – 1), (i – 1,  j), or (i,  j – 1).

・Thus,  

Hirschberg's algorithm

i-j

δ

δ

  

€ 

αxi y j

12

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j)

f(i, j) = min{�xiyj + f(i � 1, j � 1), � + f(i � 1, j), � + f(i, j � 1)}

= min{�xiyj + OPT (i � 1, j � 1), � + OPT (i � 1, j), � + OPT (i, j � 1)}

= OPT (i, j) ▪



Edit distance graph.

・Let f (i, j) be shortest path from (0,0) to (i, j).

・Lemma:  f (i, j) = OPT(i, j) for all i and j.

・Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm

i-j

m-n

0-0

j

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

13



Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute by reversing the edge orientations and inverting the roles 

of (0, 0) and (m, n).

i-j

Hirschberg's algorithm

m-n

0-0

δ

δ   

€ 

αxi y j

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

i-j

14



Edit distance graph.

・Let g (i, j) be shortest path from (i, j) to (m, n).

・Can compute g(•,  j) for any j in O(mn) time and O(m + n) space.

Hirschberg's algorithm

i-j

m-n

0-0

j

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε
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Observation 1.  The cost of the shortest path that uses (i, j) is f (i,  j) + g(i,  j). 

Hirschberg's algorithm

i-j

m-n

0-0

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

16



Observation 2.  let q be an index that minimizes f (q, n/2) + g (q, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) uses (q, n/2).

Hirschberg's algorithm

i-j

m-n

0-0

n / 2

qx1

x2

x3

ε

y1 y2 y3 y4 y5 y6ε

17



Divide.  Find index q that minimizes f (q, n/2) + g(q, n/2); align xq and yn / 2.
Conquer.  Recursively compute optimal alignment in each piece.

Hirschberg's algorithm

i-j

0-0

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

ε

ε

n / 2

q

18



Theorem.  Let T(m, n) = max running time of Hirschberg's algorithm on 

strings of length at most m and n. Then, T(m, n) = O(m n log n).

Pf.   T(m, n)  ≤   2 T(m, n / 2)  +  O(m n)
                      ⇒   T(m, n) =  O(m log n).

Remark.  Analysis is not tight because two subproblems are of size

(q, n/2) and (m – q, n / 2).  In next slide, we save log n factor.

Hirschberg's algorithm:  running time analysis warmup

19



Theorem.  Let T(m, n) = max running time of Hirschberg's algorithm on 

strings of length at most m and n. Then, T(m, n) = O(m n).

Pf.  [ by induction on n ]

・O(m n) time to compute f ( •,  n / 2) and g ( •,  n / 2) and find index q.

・T(q, n / 2) + T(m – q, n / 2) time for two recursive calls. 

・Choose constant c so that:

・Claim.  T(m, n)   ≤   2 c m n.

・Base cases: m = 2 or n = 2. 

・Inductive hypothesis:  T(m, n)    ≤   2 c m n for all (m', n') with m' + n'  <  m + n.

Hirschberg's algorithm:  running time analysis

20

T(m, n) ≤ T(q, n / 2) + T(m – q, n / 2) + c m n

≤ 2 c q n / 2  +  2 c (m – q) n / 2  +  c m n

= c q n  +  c m n  –  c q n  +  c m n

= 2 c m n  ▪

T(m, 2) ≤ c m
T(2, n) ≤ c n
T(m, n) ≤ c m n + T(q, n / 2) + T(m – q, n / 2)



SECTION 6.8

6. DYNAMIC PROGRAMMING II

‣ sequence alignment

‣ Hirschberg's algorithm

‣ Bellman-Ford 

‣ distance vector protocols 

‣ negative cycles in a digraph



22

Shortest paths

Shortest path problem.  Given a digraph G = (V, E), with arbitrary edge 

weights or costs cvw, find cheapest path from node s to node t.

7

1 3

source s

-1

8

5

7

5
4

-3

-512

10

13

9

cost of path = 9 - 3 + 1 + 11 = 18
destination t

0

4

5

2

6

9

-3

1 11
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Shortest paths:  failed attempts

Dijkstra.  Can fail if negative edge weights.

Reweighting.  Adding a constant to every edge weight can fail.

u

s t

wv

2 2

3 3

-3

5 5

6 7

0

s

v

u2

-8 w

1 3
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Negative cycles

Def.  A negative cycle is a directed cycle such that the sum of its edge 

weights is negative.

-3

5

-3

-44

a negative cycle W :  c(W ) =
�

e�W

ce < 0
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Shortest paths and negative cycles

Lemma 1.  If some path from v to t contains a negative cycle, then there 

does not exist a cheapest path from v to t.

Pf.  If there exists such a cycle W, then can build a v↝t path of arbitrarily 

negative weight by detouring around cycle as many times as desired.  ▪

W

c(W) < 0

v t
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Shortest paths and negative cycles

Lemma 2.  If G has no negative cycles, then there exists a cheapest path 

from v to t that is simple (and has ≤  n – 1 edges).

Pf.

・Consider a cheapest v↝t path P that uses the fewest number of edges.

・If P contains a cycle W, can remove portion of P corresponding to W 

without increasing the cost.  ▪

W

c(W) ≥ 0

v t
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Shortest path and negative cycle problems

Shortest path problem.  Given a digraph G = (V, E) with edge weights cvw and 

no negative cycles, find cheapest v↝t path for each node v.

Negative cycle problem.  Given a digraph G = (V, E) with edge weights cvw, 

find a negative cycle (if one exists). 

-3

5

-3

-44

negative cycle

4

t

1

-3

shortest-paths tree

52
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Shortest paths:  dynamic programming

Def.  OPT(i, v) = cost of shortest v↝t path that uses ≤ i edges.

・Case 1:  Cheapest v↝t path uses ≤ i – 1 edges.
- OPT(i, v) = OPT(i – 1, v)

・Case 2:  Cheapest v↝t path uses exactly i edges.
- if (v, w) is first edge, then OPT uses (v, w), and then selects best w↝t 

path using ≤ i – 1 edges

Observation.  If no negative cycles, OPT(n – 1, v) = cost of cheapest v↝t path.

Pf.  By Lemma 2, cheapest v↝t path is simple.  ▪

  

€ 

OPT(i, v) =
 0 if  i = 0

  min OPT(i −1, v) ,
(v, w)∈ E

min OPT(i −1, w)+ cvw{ }
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

otherwise

⎧ 

⎨ 
⎪ 

⎩ ⎪ 

∞

optimal substructure property
(proof via exchange argument)
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Shortest paths:  implementation

SHORTEST-PATHS (V, E, c, t)                          


FOREACH node v ∈ V

M [0, v] ← ∞.
M [0, t] ← 0.
FOR i = 1 TO n – 1

FOREACH node v ∈ V

M [i, v] ← M [i – 1, v].
FOREACH edge (v, w) ∈ E 

M [i, v] ← min { M [i, v],  M [i – 1, w] + cvw }.
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Shortest paths:  implementation

Theorem 1.  Given a digraph G = (V, E) with no negative cycles, the dynamic 

programming algorithm computes the cost of the cheapest v↝t path for

each node v in Θ(mn) time and Θ(n2) space.

Pf.

・Table requires Θ(n2) space.

・Each iteration i takes Θ(m) time since we examine each edge once.  ▪

Finding the shortest paths.

・Approach 1:  Maintain a successor(i, v) that points to next node on 

cheapest v↝t path using at most i edges.

・Approach 2:   Compute optimal costs M[i, v] and consider only edges 

with M[i, v] = M[i – 1, w] + cvw. 
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Shortest paths:  practical improvements

Space optimization.  Maintain two 1d arrays (instead of 2d array).

・d(v) = cost of cheapest v↝t path that we have found so far.

・successor(v) = next node on a v↝t path.

Performance optimization.  If d(w) was not updated in iteration i – 1,

then no reason to consider edges entering w in iteration i.
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Bellman-Ford:  efficient implementation

BELLMAN-FORD (V, E, c, t)                          


FOREACH node v ∈ V

d(v) ← ∞.
successor(v) ← null.

d(t) ← 0.
FOR i = 1 TO n – 1

FOREACH node w ∈ V

IF (d(w) was updated in previous iteration) 
FOREACH edge (v, w) ∈ E 

IF ( d(v) > d(w) +  cvw)
d(v) ← d(w) +  cvw.
successor(v) ← w.

IF no d(w) value changed in iteration i, STOP.


1 pass



33

Bellman-Ford:  analysis

Claim.  After the ith pass of Bellman-Ford, d(v) equals the cost of the cheapest 

v↝t path using at most i edges.

Counterexample.  Claim is false!

wv t2

d(t) = 0d(w) = 2

1

if nodes w considered before node v,
then d(v) = 3 after 1 pass

d(v) = 3

4
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Bellman-Ford:  analysis

Lemma 3.  Throughout Bellman-Ford algorithm, d(v) is the cost of some v↝t 
path; after the ith pass, d(v) is no larger than the cost of the cheapest v↝t path 

using ≤ i edges.

Pf.  [by induction on i]

・Assume true after ith pass.

・Let P be any v↝t path with i + 1 edges.

・Let (v, w) be first edge on path and let P' be subpath from w to t.

・By inductive hypothesis, d(w) ≤  c(P') since P' is a w↝t path with i edges.

・After considering v in pass i+1:  

Theorem 2.  Given a digraph with no negative cycles, Bellman-Ford computes 

the costs of the cheapest v↝t paths in O(mn) time and Θ(n) extra space.

Pf.  Lemmas 2 + 3.  ▪
can be substantially

faster in practice

d(v) ≤ cvw + d(w)

≤ cvw + c(P')
= c(P)   ▪



Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

35

Bellman-Ford:  analysis

2 110

3

t

1

d(t) = 0d(1) = 10d(2) = 20

10

s(2) = 1 s(1) = t

1

d(3) = 1
s(3) = t

consider nodes in order: t, 1, 2, 3



Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

36

Bellman-Ford:  analysis

2 110

3

t

1

d(t) = 0d(1) = 2d(2) = 20

10

s(2) = 1 s(1) = 3

1

d(3) = 1
s(3) = t

consider nodes in order: t, 1, 2, 3



Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

・Successor graph may have cycles.

37

Bellman-Ford:  analysis

3

4

22

-8 1

1 3 t

9

5

d(t) = 0

d(2) = 8

d(1) = 5

d(3) = 10

d(4) = 11

consider nodes in order: t, 1, 2, 3, 4



Claim.  Throughout the Bellman-Ford algorithm, following successor(v) 
pointers gives a directed path from v to t of cost d(v).

Counterexample.  Claim is false!

・Cost of successor v↝t path may have strictly lower cost than d(v).

・Successor graph may have cycles.

38

Bellman-Ford:  analysis

3

4

22

-8 1

1 3 t

9

5

d(t) = 0

d(2) = 8

d(1) = 3

d(3) = 10

d(4) = 11

consider nodes in order: t, 1, 2, 3, 4



39

Bellman-Ford:  finding the shortest path

Lemma 4.  If the successor graph contains a directed cycle W,

then W is a negative cycle.

Pf.

・If successor(v) = w, we must have d(v)  ≥  d(w) + cvw.

(LHS and RHS are equal when successor(v) is set; d(w) can only decrease; 

d(v) decreases only when successor(v) is reset) 

・Let v1 → v2 → … → vk   be the nodes along the cycle W.

・Assume that (vk, v1) is the last edge added to the successor graph.

・Just prior to that:

・Adding inequalities yields c(v1, v2) + c(v2, v3)  + … + c(vk–1, vk) + c(vk, v1)  <  0. ▪ 

d(v1) ≥ d(v2) +  c(v1, v2)
d(v2) ≥ d(v3) +  c(v2, v3)
 ⋮   ⋮ ⋮

d(vk–1) ≥ d(vk) +  c(vk–1, vk)
d(vk) > d(v1) +  c(vk, v1)

W is a negative cycle

holds with strict inequality
since we are updating d(vk)
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Bellman-Ford:  finding the shortest path

Theorem 3.  Given a digraph with no negative cycles, Bellman-Ford finds the 

cheapest s↝t paths in O(mn) time and Θ(n) extra space.

Pf.

・The successor graph cannot have a negative cycle.  [Lemma 4]

・Thus, following the successor pointers from s yields a directed path to t.

・Let s = v1 → v2 → … → vk = t  be the nodes along this path P.

・Upon termination, if successor(v) = w, we must have d(v)  =  d(w) + cvw.

(LHS and RHS are equal when successor(v) is set; d(·) did not change)

・Thus,

・

Adding equations yields d(s) = d(t) + c(v1, v2) + c(v2, v3)  + … + c(vk–1, vk).  ▪ 

d(v1) = d(v2) +  c(v1, v2)
d(v2) = d(v3) +  c(v2, v3)
 ⋮   ⋮ ⋮

d(vk–1) = d(vk) +  c(vk–1, vk)

cost of path P
min cost

of any s↝t path
(Theorem 2)

0

since algorithm
terminated
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Distance vector protocols

Communication network.

・Node ≈ router.

・Edge ≈ direct communication link.

・Cost of edge ≈ delay on link.

Dijkstra's algorithm.  Requires global information of network.

Bellman-Ford.  Uses only local knowledge of neighboring nodes.

Synchronization.  We don't expect routers to run in lockstep. The order in 

which each foreach loop executes in not important. Moreover, algorithm 

still converges even if updates are asynchronous.

naturally nonnegative, but Bellman-Ford used anyway!
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Distance vector protocols

Distance vector protocols. [ "routing by rumor" ]

・Each router maintains a vector of shortest path lengths to every other 

node (distances) and the first hop on each path (directions).

・Algorithm:  each router performs n separate computations, one for each 

potential destination node.

Ex.  RIP, Xerox XNS RIP, Novell's IPX RIP,  Cisco's IGRP, DEC's DNA Phase IV, 

AppleTalk's RTMP.

Caveat.  Edge costs may change during algorithm (or fail completely).

"counting to infinity"

vs t1

1

1

d(s) = 2 d(v) = 1

deleted

d(t) = 0
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Path vector protocols

Link state routing.

・Each router also stores the entire path.

・Based on Dijkstra's algorithm.

・Avoids "counting-to-infinity" problem and related difficulties.

・Requires significantly more storage.

Ex.  Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

not just the distance and first hop
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Detecting negative cycles

Negative cycle detection problem. Given a digraph G = (V, E), with edge 

weights cvw, find a negative cycle (if one exists).

2-3 4

5

-3

-44

-3

6
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Detecting negative cycles:  application

Currency conversion.  Given n currencies and exchange rates between pairs 

of currencies, is there an arbitrage opportunity?

Remark.  Fastest algorithm very valuable!

An arbitrage opportunity

USD

0.
74
1 1.

35
0

0.888

1.126

0.
62
0

1.
61
4

1.049

0.953

1.011
0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.943

1.433

0.698
EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497



Lemma 5.  If OPT(n, v) = OPT(n – 1, v) for all v, then no negative cycle can 

reach t.
Pf.  Bellman-Ford algorithm.  ▪

Lemma 6.  If OPT(n, v)  <  OPT(n – 1, v) for some node v, then (any) cheapest 

path from v to t contains a cycle W.  Moreover W is a negative cycle.

Pf.  [by contradiction]

・Since OPT(n, v)  <  OPT(n – 1, v), we know that shortest v↝t path P has 

exactly n edges.

・By pigeonhole principle, P must contain a directed cycle W.

・Deleting W yields a v↝t path with <  n edges  ⇒  W has negative cost.  ▪

48

Detecting negative cycles

W

c(W) < 0

v t
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Detecting negative cycles

Theorem 4.  Can find a negative cycle in Θ(mn) time and Θ(n2) space.

Pf.

・Add new node t and connect all nodes to t with 0-cost edge.

・G has a negative cycle iff G' has a negative cycle than can reach t.

・If OPT(n, v) = OPT(n – 1, v) for all nodes v, then no negative cycles.

・If not, then extract directed cycle from path from v to t.
(cycle cannot contain t since no edges leave t)  ▪

2

destination t

-3 4

5

-3

-44

-3

6

t

G'
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Detecting negative cycles

Theorem 5.  Can find a negative cycle in O(mn) time and O(n) extra space.

Pf.

・Run Bellman-Ford for n passes (instead of n – 1) on modified digraph.

・If no d(v) values updated in pass n, then no negative cycles.

・Otherwise, suppose d(s) updated in pass n.

・Define pass(v) = last pass in which d(v) was updated. 

・Observe pass(s) = n  and  pass(successor(v)) ≥ pass(v) – 1 for each v.

・Following successor pointers, we must eventually repeat a node.

・Lemma 4 ⇒  this cycle is a negative cycle.    ▪

Remark.  See p. 304 for improved version and early termination rule.

(Tarjan's subtree disassembly trick)


