

5. DIVIDE AND CONQUER I

, merge and count demo

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne
http: / / www.cs.princeton.edu / ~wayne/kleinberg-tardos

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 2 and add x to inversion count
sorted list C
\uparrow

$$
\begin{aligned}
& x=5 \\
& \text { inversions }=0
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

3	7	10	14	18	2	11	16	17	23
4					5	4			

compare minimum entry in each list: copy 3 and decrement x
sorted list C
2
\uparrow

$$
\begin{aligned}
& x=5 \\
& \text { inversions }=5
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 7 and decrement x
sorted list C
23
\uparrow

$$
\begin{aligned}
& x=4 \\
& \text { inversions = } 5
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 10 and decrement x
sorted list C
$\begin{array}{lll}2 & 3 & 7\end{array}$
4

$$
\begin{aligned}
& x=3 \\
& \text { inversions }=5
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 11 and add x to increment count
sorted list C
$\begin{array}{llll}2 & 3 & 7 & 10\end{array}$

\[

\]

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 14 and decrement x
sorted list C
$\begin{array}{lllll}2 & 3 & 7 & 10 & 11\end{array}$

$$
\begin{aligned}
& \text { 4 } \\
& x=2 \\
& \text { inversions }=7
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 16 and add x to increment count
sorted list C

2	3	7	10	11	14

\uparrow
$x=1$
inversions = 7

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 17 and add x to increment count
sorted list C

$$
\begin{array}{lllllll}
2 & 3 & 7 & 10 & 11 & 14 & 16
\end{array}
$$

```
x = 1
inversions = 8
```


Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A
sorted list B

compare minimum entry in each list: copy 18 and decrement x
sorted list C
$\begin{array}{llllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17\end{array}$

```
x = 1
inversions = 9
```


Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A sorted list B

list A exhausted: copy 23
sorted list C
$\begin{array}{lllllllll}2 & 3 & 7 & 10 & 11 & 14 & 16 & 17 & 18\end{array}$

$$
\begin{aligned}
& x=0 \\
& \text { inversions }=9
\end{aligned}
$$

Merge and count demo

Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.
sorted list A sorted list B

done: return 9 inversions
sorted list C

2	3	7	10	11	14	16	17	18	23

$$
\begin{aligned}
& x=0 \\
& \text { inversions }=9
\end{aligned}
$$

