
Study Guide to Accompany Operating Systems Concepts 10th Ed by Silberschatz, Galvin and Gagne
By Andrew DeNicola, BU ECE Class of 2012

Figures Copyright © John Wiley & Sons 2012

Ch.1 - Introduction

• An OS is a program that acts as an intermediary between a user of a computer and the computer hardware
• Goals: Execute user programs, make the comp. system easy to use, utilize hardware efficiently
• Computer system: Hardware ↔ OS ↔ Applications ↔ Users (↔ = 'uses')
• OS is:

◦ Resource allocator: decides between conflicting requests for efficient and fair resource use
◦ Control program: controls execution of programs to prevent errors and improper use of computer

• Kernel: the one program running at all times on the computer
• Bootstrap program: loaded at power-up or reboot

◦ Stored in ROM or EPROM (known as firmware), Initializes all aspects of system, loads OS kernel and starts
execution

• I/O and CPU can execute concurrently
• Device controllers inform CPU that it is finished w/ operation by causing an interrupt

◦ Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which
contains the addresses of all the service routines

◦ Incoming interrupts are disabled while another interrupt is being processed
◦ Trap is a software generated interrupt caused by error or user request
◦ OS determines which type of interrupt has occurred by polling or the vectored interrupt system

• System call: request to the operating system to allow user to wait for I/O completion
• Device-status table: contains entry for each I/O device indicating its type, address, and state

◦ OS indexes into the I/O device table to determine device status and to modify the table entry to include
interrupt

• Storage structure:
◦ Main memory – random access, volatile
◦ Secondary storage – extension of main memory That provides large non-volatile storage
◦ Disk – divided into tracks which are subdivided into sectors. Disk controller determines logical interaction

between the device and the computer.
• Caching – copying information into faster storage system
• Multiprocessor Systems: Increased throughput, economy of

 scale, increased reliability
◦ Can be asymmetric or symmetric
◦ Clustered systems – Linked multiprocessor systems

• Multiprogramming – Provides efficiency via job scheduling
◦ When OS has to wait (ex: for I/O), switches to another job

• Timesharing – CPU switches jobs so frequently that each user
 can interact with each job while it is running (interactive computing)

• Dual-mode operation allows OS to protect itself and other system components – User mode and kernel mode
◦ Some instructions are only executable in kernel mode, these are privileged

• Single-threaded processes have one program counter, multi-threaded processes have one PC per thread
• Protection – mechanism for controlling access of processes or users to resources defined by the OS
• Security – defense of a system against attacks
• User IDs (UID), one per user, and Group IDs, determine which users and groups of users have which privileges

Ch.2 – OS Structures
• User Interface (UI) – Can be Command-Line (CLI) or Graphics User Interface (GUI) or Batch

◦ These allow for the user to interact with the system services via system calls (typically written in C/C++)
• Other system services that a helpful to the user include: program execution, I/O operations, file-system

manipulation, communications, and error detection
• Services that exist to ensure efficient OS operation are: resource allocation, accounting, protection and security
• Most system calls are accessed by Application Program Interface (API) such as Win32, POSIX, Java
• Usually there is a number associated with each system call

◦ System call interface maintains a table indexed according to these numbers
• Parameters may need to be passed to the OS during a system call, may be done by:

◦ Passing in registers, address of parameter stored in a block, pushed onto the stack by the program and popped
off by the OS

◦ Block and stack methods do not limit the number
or length of parameters being passed

• Process control system calls include: end, abort, load,
execute, create/terminate process, wait, allocate/free
memory

• File management system calls include: create/delete
file, open/close file, read, write, get/set attributes

• Device management system calls: request/release
device, read, write, logically attach/detach devices

• Information maintenance system calls: get/set time,
get/set system data, get/set process/file/device attributes

• Communications system calls: create/delete
communication connection, send/receive, transfer status
information

• OS Layered approach:
◦ The operating system is divided into a number of layers (levels), each built on top of lower layers. The bottom

layer (layer 0), is the hardware; the highest (layer N) is the user interface
◦ With modularity, layers are selected such that each uses functions (operations) and services of only lower-level

layers
• Virtual machine: uses layered approach, treats hardware and the OS kernel as though they were all hardware.

◦ Host creates the illusion that a process has its own processor and own virtual memory
◦ Each guest provided with a 'virtual' copy of the underlying computer

• Application failures can generate core dump file capturing memory of the process
• Operating system failure can generate crash dump file containing kernel memory

Ch.3 – Processes
• Process contains a program counter, stack, and data section.

◦ Text section: program code itself
◦ Stack: temporary data (function parameters, return addresses, local

variables)
◦ Data section: global variables
◦ Heap: contains memory dynamically allocated during run-time

• Process Control Block (PCB): contains information associated with each
process: process state, PC, CPU registers, scheduling information,
accounting information, I/O status information

• Types of processes:
◦ I/O Bound: spends more time doing I/O than computations, many

short CPU bursts
◦ CPU Bound: spends more time doing computations, few very

long CPU bursts
• When CPU switches to another process, the system must save the

state of the old process (to PCB) and load the saved state (from PCB)
for the new process via a context switch
◦ Time of a context switch is dependent on hardware

• Parent processes create children processes (form a tree)
◦ PID allows for process management
◦ Parents and children can share all/some/none resources
◦ Parents can execute concurrently with children or wait until

children terminate
◦ fork() system call creates new process

▪ exec() system call used after a fork to replace the processes' memory space with a new program
• Cooperating processes need interprocess communication (IPC): shared memory or message passing
• Message passing may be blocking or non-blocking

◦ Blocking is considered synchronous
▪ Blocking send has the sender block until the message is received
▪ Blocking receive has the receiver block until a message is available

◦ Non-blocking is considered asynchronous
▪ Non-blocking send has the sender send the message and continue
▪ Non-blocking receive has the receiver receive a valid message or null

Ch.4 – Threads
• Threads are fundamental unit of CPU utilization that forms the basis of multi-threaded computer systems
• Process creation is heavy-weight while thread creation is light-weight

◦ Can simplify code and increase efficiency
• Kernels are generally multi-threaded
• Multi-threading models include: Many-to-One, One-to-One, Many-to-Many

◦ Many-to-One: Many user-level threads mapped to single kernel thread
◦ One-to-One: Each user-level thread maps to kernel thread
◦ Many-to-Many: Many user-level threads mapped to many kernel threads

• Thread library provides programmer with API for creating and managing threads
• Issues include: thread cancellation, signal handling (synchronous/asynchronous), handling thread-specific data, and

scheduler activations.
◦ Cancellation:

▪ Asynchronous cancellation terminates the target thread immediately
▪ Deferred cancellation allows the target thread to periodically check if it should be canceled

◦ Signal handler processes signals generated by a particular event, delivered to a process, handled
◦ Scheduler activations provide upcalls – a communication mechanism from the kernel to the thread library.

▪ Allows application to maintain the correct number of kernel threads

Ch.5 – Process Synchronization
• Race Condition: several processes access and manipulate the same data concurrently, outcome depends on which

order each access takes place.
• Each process has critical section of code, where it is manipulating data

◦ To solve critical section problem each process must ask permission to enter critical section in entry section,
follow critical section with exit section and then execute the remainder section

◦ Especially difficult to solve this problem in preemptive kernels
• Peterson's Solution: solution for two processes

◦ Two processes share two variables: int turn and Boolean flag[2]
◦ turn: whose turn it is to enter the critical section
◦ flag: indication of whether or not a process is ready to enter critical section

▪ flag[i] = true indicates that process Pi is ready
◦ Algorithm for process Pi:

 do {
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j)
 critical section
 flag[i] = FALSE;
 remainder section
 } while (TRUE);

• Modern machines provide atomic hardware instructions: Atomic = non-interruptable
• Solution using Locks:

 do {
 acquire lock
 critical section
 release lock
 remainder section
 } while (TRUE);

• Solution using Test-And-Set: Shared boolean variable lock, initialized to FALSE

• Solution using Swap: Shared bool variable lock initialized to FALSE; Each process has local bool variable key

• Semaphore: Synchronization tool that does not require busy waiting
◦ Standard operations: wait() and signal() ← these are the only operations that can access semaphore S
◦ Can have counting (unrestricted range) and binary (0 or 1) semaphores

• Deadlock: Two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting
processes (most OSes do not prevent or deal with deadlocks)
◦ Can cause starvation and priority inversion (lower priority process holds lock needed by higher-priority

process)

boolean TestAndSet (boolean *target){
 boolean rv = *target;
 *target = TRUE;"
 return rv:
}

do {
 while (TestAndSet (&lock))
 ; // do
nothing
 // critical section
 lock = FALSE;
 // remainder section
} while (TRUE);

void Swap (boolean *a, boolean *b){
 boolean temp = *a;
 *a = *b;
 *b = temp:
}

do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock,
&key);
 // critical section
 lock = FALSE;
 // remainder section
} while (TRUE);

Ch.5 – Process Synchronization Continued
• Other synchronization problems include Bounded-Buffer Problem and Readers-Writers Problem
• Monitor is a high-level abstraction that provides a convenient and effective mechanism for process synchronization

◦ Only one process may be active within the monitor at a time
◦ Can utilize condition variables to suspend a resume processes (ex: condition x, y;)

▪ x.wait() – a process that invokes the operation is suspended until x.signal()
▪ x.signal() – resumes one of processes (if any) that invoked x.wait()

◦ Can be implemented with semaphores

Ch.6 – CPU Scheduling
• Process execution consists of a cycle of CPU execution and I/O wait
• CPU scheduling decisions take place when a process:

◦ Switches from running to waiting (nonpreemptive)
◦ Switches from running to ready (preemptive)
◦ Switches from waiting to ready (preemptive)
◦ Terminates (nonpreemptive)

• The dispatcher module gives control of the CPU to the process selected by the short-term scheduler
◦ Dispatch latency- the time it takes for the dispatcher to stop one process and start another

• Scheduling algorithms are chosen based on optimization criteria (ex: throughput, turnaround time, etc.)
◦ FCFS, SJF, Shortest-Remaining-Time-First (preemptive SJF), Round Robin, Priority

• Determining length of next CPU burst: Exponential Averaging:
1. tn = actual length of nth CPU burst
2. τn+1 = predicted value for the next CPU burst
3. α, 0 ≤ α ≤ 1 (commonly α set to 1/2)
4. Define: τn+1 = α*tn + (1-α)τn

• Priority Scheduling can result in starvation, which can be solved by
aging a process (as time progresses, increase the priority)

• In Round Robin, small time quantums can result in large amounts of
context switches
◦ Time quantum should be chosen so that 80% of processes have

shorter burst times that the time quantum
• Multilevel Queues and Multilevel Feedback Queues have multiple

process queues that have different priority levels
◦ In the Feedback queue, priority is not fixed → Processes can be promoted and demoted to different queues
◦ Feedback queues can have different scheduling algorithms at different levels

• Multiprocessor Scheduling is done in several different ways:
◦ Asymmetric multiprocessing: only one processor accesses system data structures → no need to data share
◦ Symmetric multiprocessing: each processor is self-scheduling (currently the most common method)
◦ Processor affinity: a process running on one processor is more likely to continue to run on the same processor

(so that the processor's memory still contains data specific to that specific process)
• Little's Formula can help determine average wait time per process in any scheduling algorithm:

◦ n = λ x W
◦ n = avg queue length; W = avg waiting time in queue; λ = average arrival rate into queue

• Simulations are programmed models of a computer system with variable clocks
◦ Used to gather statistics indicating algorithm performance
◦ Running simulations is more accurate than queuing models (like Little's Law)
◦ Although more accurate, high cost and high risk

Ch.7 – Deadlocks
• Deadlock Characteristics: deadlock can occur if these conditions hold simultaneously

◦ Mutual Exclusion: only one process at a time can use a resource
◦ Hold and Wait: process holding one resource is waiting to acquire resource held by another process
◦ No Preemption: a resource can be released only be the process holding it after the process completed its task
◦ Circular Wait: set of waiting processes such that Pn-1 is waiting for resource from Pn, and Pn is waiting for P0

▪ “Dining Philosophers” in deadlock

Ch.8 – Main Memory
• Cache sits between main memory and CPU registers
• Base and limit registers define logical address space usable by a process
• Compiled code addresses bind to relocatable addresses

◦ Can happen at three different stages
▪ Compile time: If memory location known a priori, absolute code can be generated
▪ Load time: Must generate relocatable code if memory location not known at compile time
▪ Execution time: Binding delayed until run time if the process can be moved during its execution

• Memory-Management Unit (MMU) device that maps virtual to physical address
• Simple scheme uses a relocation register which just adds a base value to address
• Swapping allows total physical memory space of processes to exceed physical

memory
◦ Def: process swapped out temporarily to backing store then brought back in

for continued execution
• Backing store: fast disk large enough to accommodate copes of all memory images
• Roll out, roll in: swapping variant for priority-based scheduling.

◦ Lower priority process swapped out so that higher priority process can be
loaded

• Solutions to Dynamic Storage-Allocation Problem:
◦ First-fit: allocate the first hole that is big enough
◦ Best-fit: allocate the smallest hole that is big enough (must search entire list) → smallest leftover hole
◦ Worst-fit: allocate the largest hole (search entire list) → largest leftover hole

• External Fragmentation: total memory space exists to satisfy request, but is not contiguous
◦ Reduced by compaction: relocate free memory to be together in one block

▪ Only possible if relocation is dynamic
• Internal Fragmentation: allocated memory may be slightly larger than requested memory
• Physical memory divided into fixed-sized frames: size is power of 2, between 512 bytes and 16 MB
• Logical memory divided into same sized blocks: pages
• Page table used to translate logical to physical addresses

◦ Page number (p): used as an index into a page table
◦ Page offset (d): combined with base address to define the physical memory address

• Free-frame list is maintained to keep track of which frames can be allocated

For given logical address space 2m and page size 2n

Ch.8 – Main Memory Continued
• Transition Look-aside Buffer (TLB) is a CPU cache that memory management hardware uses to improve virtual

address translation speed
◦ Typically small – 64 to 1024 entries
◦ On TLB miss, value loaded to TLB for faster access next time
◦ TLB is associative – searched in parallel

• Effective Access Time: EAT = (1 + ε) α + (2 + ε)(1 – α)

◦ ε = time unit, α = hit ratio
• Valid and invalid bits can be used to protect memory

◦ “Valid” if the associated page is in the process' logical address space, so it is a legal page
• Can have multilevel page tables (paged page tables)
• Hashed Page Tables: virtual page number hashed into page table

◦ Page table has chain of elements hashing to the same location
◦ Each element has (1) virtual page number, (2) value of mapped page frame, (3) a pointer to the next element
◦ Search through the chain for virtual page number

• Segment table – maps two-dimensional physical addresses
◦ Entries protected with valid bits and r/w/x privileges

Paging with TLB

Page table example

Paging without TLB

Segmentation example

Ch.9 – Virtual Memory
• Virtual memory: separation of user logical memory and physical memory

◦ Only part of program needs to be in memory for execution → logical address space > physical address space
◦ Allows address spaces to be shared by multiple processes → less swapping
◦ Allows pages to be shared during fork(), speeding process creation

• Page fault results from the first time there is a reference to a specific page → traps the OS
◦ Must decide to abort if the reference is invalid, or if the desired page is just not in memory yet

▪ If the latter: get empty frame, swap page into frame, reset tables to indicate page now in memory, set
validation bit, restart instruction that caused the page fault

◦ If an instruction accesses multiple pages near each other → less “pain” because of locality of reference
• Demand Paging only brings a page into memory when it is needed → less I/O and memory needed

◦ Lazy swapper – never swaps a page into memory unless page will be needed
◦ Could result in a lot of page-faults
◦ Performance: EAT = [(1-p)*memory access + p*(page fault overhead + swap page out + swap page in + restart

overhead)]; where Page Fault Rate 0 ″ p ″ 1
▪ if p = 0, no page faults; if p = 1, every reference is a fault

◦ Can optimize demand paging by loading entire process image to swap space at process load time
• Pure Demand Paging: process starts with no pages in memory
• Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory

◦ If either process modifies a shared page, only then is the page copied
• Modify (dirty) bit can be used to reduce overhead of page transfers → only modified pages written to disk
• When a page is replaced, write to disk if it has been marked dirty and swap in desired page
• Pages can be replaced using different algorithms: FIFO, LRU (below)

◦ Stack can be used to record the most recent page references (LRU is a “stack” algorithm)

◦ Second chance algorithm uses a reference bit

▪ If 1, decrement and leave in memory
▪ If 0, replace next page

• Fixed page allocation: Proportional allocation – Allocate according to size of process
◦ si = size of process Pi, S = Σsi, m = total number of frames, ai – allocation for Pi

◦ ai = (si/S)*m
• Global replacement: process selects a replacement frame from set of all frames

◦ One process can take frame from another
◦ Process execution time can vary greatly
◦ Greater throughput

• Local replacement: each process selects from only its own set of allocated frames
◦ More consistent performance
◦ Possible under-utilization of memory

• Page-fault rate is very high if a process does not have “enough” pages
◦ Thrashing: a process is busy swapping pages in and out → minimal work is actually being performed

• Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page

in memory
• I/O Interlock: Pages must sometimes be locked into memory

Ch.10 – Mass-Storage Systems
• Magnetic disks provide bulk of secondary storage – rotate at 60 to 250 times per second

◦ Transfer rate: rate at which data flows between drive and computer
◦ Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for

desired sector to rotate under the disk head (rotational latency)
◦ Head crash: disk head making contact with disk surface

• Drive attached to computer's I/O bus – EIDE, ATA, SATA, USB, etc.
◦ Host controller uses bus to talk to disk controller

• Access latency = Average access time = average seek time + average latency (fast ~5ms, slow ~14.5ms)
• Average I/O time = avg. access time + (amount to transfer / transfer rate) + controller overhead

◦ Ex: to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a
.1ms controller overhead = 5ms + 4.17ms + 4KB / 1Gb/sec + 0.1ms = 9.27ms + .12ms = 9.39ms

• Disk drives addressed as 1-dimensional arrays of logical blocks
◦ 1-dimensional array is mapped into the sectors of the disk sequentially

• Host-attached storage accessed through I/O ports talking to I/O buses
◦ Storage area network (SAN): many hosts attach to many storage units, common in large storage environments

▪ Storage made available via LUN masking from specific arrays to specific servers
• Network attached storage (NAS): storage made available over a network rather than local connection
• In disk scheduling, want to minimize seek time; Seek time is proportional to seek distance
• Bandwidth is (total number of bytes transferred) / (total time between first request and completion of last transfer)
• Sources of disk I/O requests: OS, system processes, user processes

◦ OS maintains queue of requests, per disk or device
• Several algorithms exist to schedule the servicing of disk I/O requests

◦ FCFS, SSTF (shortest seek time first), SCAN, CSCAN, LOOK, CLOOK
▪ SCAN/elevator: arm starts at one end and moves towards other end servicing

requests as it goes, then reverses direction
▪ CSCAN: instead of reversing direction, immediately goes back to beginning
▪ LOOK/CLOOK: Arm only goes as far as the last request in each directions, then

reverses immediately
• Low level/physical formatting: dividing a disk into sectors that the disk controller can

read and write – usually 512 bytes of data
• Partition: divide disk into one or more groups of cylinders, each treated as logical disk
• Logical formatting: “making a file system”
• Increase efficiency by grouping blocks into clusters - Disk I/O is performed on blocks

◦ Boot block initializes system - bootstrap loader stored in boot block
• Swap-space: virtual memory uses disk space as an extension of main memory

◦ Kernel uses swap maps to track swap space use
• RAID: Multiple disk drives provide reliability via redundancy – increases mean time to failure

◦ Disk striping uses group of disks as one storage unit
◦ Mirroring/shadowing (RAID 1) – keeps duplicate of each disk
◦ Striped mirrors (RAID 1+0) or mirrored striped (RAID 0+1) provides high

performance/reliability
◦ Block interleaved parity (RAID 4, 5, 6) uses much less redundancy

• Solaris ZFS adds checksums of all data and metadata – detect if object is the right one and
whether it changed

• Tertiary storage is usually built using removable media – can be WORM or Read-only, handled like fixed disks
• Fixed disk usually more reliable than removable disk or tape drive
• Main memory is much more expensive than disk storage

SCAN

Ch.11 – File-System Interface
• File – Uniform logical view of information storage (no matter the medium)

◦ Mapped onto physical devices (usually nonvolatile)
◦ Smallest allotment of nameable storage
◦ Types: Data (numeric, character, binary), Program, Free form, Structured
◦ Structure decided by OS and/or program/programmer

• Attributes:
◦ Name: Only info in human-readable form
◦ Identifier: Unique tag, identifies file within the file system
◦ Type, Size
◦ Location: pointer to file location
◦ Time, date, user identification

• File is an abstract data type
• Operations: create, write, read, reposition within file, delete, truncate
• Global table maintained containing process-independent open file information: open-file table

◦ Per-process open file table contains pertinent info, plus pointer to entry in global open file table
• Open file locking: mediates access to a file (shared or exclusive)

◦ Mandatory – access denied depending on locks held and requested
◦ Advisory – process can find status of locks and decide what to do

• File type can indicate internal file structure
• Access Methods: Sequential access, direct access

◦ Sequential Access: tape model of a file
◦ Direct Access: random access, relative access

• Disk can be subdivided into partitions; disks or partitions can be RAID
protected against failure.
◦ Can be used raw without a file-system or formatted with a file system
◦ Partitions also knows as minidisks, slices

• Volume contains file system: also tracks file system's info in device directory or volume table of contents
• File system can be general or special-purpose. Some special purpose FS:

◦ tmpfs – temporary file system in volatile memory
◦ objfs – virtual file system that gives debuggers access to kernel symbols
◦ ctfs – virtual file system that maintains info to manage which processes start when system boots
◦ lofs – loop back file system allows one file system to be accessed in place of another
◦ procfs – virtual file system that presents information on all processes as a file system

• Directory is similar to symbol table – translating file names into their directory entries
◦ Should be efficient, convenient to users, logical grouping
◦ Tree structured is most popular – allows for grouping
◦ Commands for manipulating: remove – rm<file-name> ; make new sub directory - mkdir<dir-name>

• Current directory: default location for activities – can also specify a path to perform activities in
• Acyclic-graph directories adds ability to directly share directories between users

◦ Acyclic can be guaranteed by: only allowing shared files, not shared sub directories; garbage collection;
mechanism to check whether new links are OK

• File system must be mounted before it can be accessed – kernel data structure keeps track of mount points
• In a file sharing system User IDs and Group IDs help identify a user's permissions
• Client-server allows multiple clients to mount remote file systems from servers – NFS (UNIX), CIFS (Windows)
• Consistency semantics specify how multiple users are to access a shared file simultaneously – similar to

synchronization algorithms from Ch.7
◦ One way of protection is Controlled Access: when file created, determine r/w/x access for users/groups

File-System Organization

Ch.12 – File System Implementation
• File system resides on secondary storage – disks; file system is organized into layers →
• File control block: storage structure consisting of information about a file (exist per-file)
• Device driver: controls the physical device; manage I/O devices
• File organization module: understands files, logical addresses, and physical blocks

◦ Translates logical block number to physical block number
◦ Manages free space, disk allocation

• Logical file system: manages metadata information – maintains file control blocks
• Boot control block: contains info needed by system to boot OS from volume
• Volume control block: contains volume details; ex: total # blocks, # free blocks, block size, free block pointers
• Root partition: contains OS; mounted at boot time
• For all partitions, system is consistency checked at mount time

◦ Check metadata for correctness – only allow mount to occur if so
• Virtual file systems provide object-oriented way of implementing file systems
• Directories can be implemented as Linear Lists or Hash Tables

◦ Linear list of file names with pointer to data blocks – simple but slow
◦ Hash table – linear list with hash data structure – decreased search time

▪ Good if entries are fixed size
▪ Collisions can occur in hash tables when two file names hash to same

location
• Contiguous allocation: each file occupies set of contiguous blocks

◦ Simple, best performance in most cases; problem – finding space for file, external fragmentation
◦ Extent based file systems are modified contiguous allocation schemes – extent is allocated for file allocation

• Linked Allocation: each file is a linked list of blocks – no external fragmentation
◦ Locating a block can take many I/Os and disk seeks

• Indexed Allocation: each file has its own index block(s) of pointers to its data blocks
◦ Need index table; can be random access; dynamic access without external fragmentation but has overhead

• Best methods: linked good for sequential, not random; contiguous good for sequential and random
• File system maintains free-space list to track available blocks/clusters
• Bit vector or bit map (n blocks): block number calculation → (#bits/word)*(# 0-value words)+(offset for 1st bit)
•

◦ Example: block size = 4KB = 212 bytes
 disk size = 240 bytes (1 terabyte)
 n = 240/212 = 228 bits (or 256 MB)
 if clusters of 4 blocks -> 64MB of memory

• Space maps (used in ZFS) divide device space into metaslab units and manages metaslabs

◦ Each metaslab has associated space map
• Buffer cache – separate section of main memory for frequently used blocks
• Synchronous writes sometimes requested by apps or needed by OS – no buffering
•

◦ Asynchronous writes are more common, buffer-able, faster
• Free-behind and read-ahead techniques to optimize sequential access
• Page cache caches pages rather than disk blocks using virtual memory techniques and addresses

◦ Memory mapped I/O uses page cache while routine I/O through file system uses buffer (disk) cache
• Unified buffer cache: uses same page cache to cache both memory-mapped pages and ordinary file system I/O to

avoid double caching

(a) open() (b) read()

Ch.13 – I/O Systems
• Device drivers encapsulate device details – present uniform device access interface to I/O subsystem
• Port: connection point for device
• Bus: daisy chain or shared direct access
• Controller (host adapter): electronics that operate port, bus, device – sometimes integrated

◦ Contains processor, microcode, private memory, bus controller
• Memory-mapped I/O: device data and command registers mapped to processor

address space
◦ Especially for large address spaces (graphics)

• Polling for each byte of data – busy-wait for I/O from device
◦ Reasonable for fast devices, inefficient for slow ones
◦ Can happen in 3 instruction cycles

• CPU interrupt-request line is triggered by I/O devices – interrupt handler
receives interrupts
◦ Handler is maskable to ignore or delay some interrupts
◦ Interrupt vector dispatches interrupt to correct handler – based on priority;

some nonmaskable
◦ Interrupt chaining occurs if there is more than one device at the same

interrupt number
◦ Interrupt mechanism is also used for exceptions

• Direct memory access is used to avoid programmed I/O for large data movement
◦ Requires DMA controller
◦ Bypasses CPU to transfer data directly between I/O device and memory

• Device driver layer hides differences among I/O controllers from kernel
• Devices vary in many dimensions: character stream/block, sequential/random

access, synchronous/asynchronous, sharable/dedicated, speed, rw/ro/wo
• Block devices include disk drives: Raw I/O, Direct I/OU

◦ Commands include read, write, seek
• Character devices include keyboards, mice, serial ports

◦ Commands include get(), put()
• Network devices also have their own interface; UNIX and Windows NT/9x/2000 include socket interface

◦ Approaches include pipes, FIFOs, streams, queues, mailboxes
• Programmable interval timer: used for timings, periodic interrupts
• Blocking I/O: process suspended until I/O completed – easy to use and understand, not always best method
• Nonblocking I/O: I/O call returns as much as available – implemented via multi-threading, returns quickly
• Asynchronous: process runs while I/O executes – difficult to use, process signaled upon I/O completion
• Spooling: hold output for a device – if device can only serve one request at a time (ex: printer)
• Device Reservation: provides exclusive access to a device – must be careful of deadlock
• Kernel keeps state info for I/O components, including open file tables, network connections, character device states

◦ Complex data structures track buffers, memory allocation, “dirty” blocks
• STREAM: full-duplex communication channel between user-level process and device in UNIX

◦ Each module contains read queue and write queue
◦ Message passing used to communicate between queues – Flow control option to indicate available or busy
◦ Asynchronous internally, synchronous where user process communicates with stream head

• I/O is a major factor in system performance – demand on CPU, context switching, data copying, network traffic

Ch.14 – Protection
• Principle of least privilege: programs, users, systems should be given just enough privileges to perform their tasks
• Access-right = <obj-name, rights-set> w/ rights-set is subset of all valid operations performable on the object

◦ Domain: set of access-rights
▪ UNIX system consists of 2 domains: user, supervisor
▪ MULTICS domain implementation (domain rings) – if j<i → Di � Dj

• Access matrix: rows represent domains, columns represent objects
◦ Access(i,j) is the set of operations that a process executing in Domaini can

invoke on Objectj

◦ Can be expanded to dynamic protection
• Access matrix design separates mechanism from policy

◦ Mechanism: OS provides access-matrix and rules – ensures matrix is only manipulated by authorized users
◦ Policy: User dictates policy – who can access what object and in what mode

• Solaris 10 uses role-based access control (RBAC) to implement least privilege
• Revocation of access rights

◦ Access list: delete access rights from access list – simple, immediate
◦ Capability list: required to locate capability in system before capability can be revoked – reacquisition, back-

pointers, indirection, keys
• Language-Based Protection: allows high-level description of policies for the allocation and use of resources

◦ Can provide software for protection enforcement when hardware-supported checking is unavailable

Ch.15 – Security

• System secure when resources used and accessed as intended under all
circumstances

• Attacks can be accidental or malicious
◦ Easier to protect against accidental than malicious misuse

• Security violation categories:
◦ Breach of confidentiality – unauthorized reading of data
◦ Breach of integrity – unauthorized modification of data
◦ Breach of availability – unauthorized destruction of data
◦ Theft of service – unauthorized use of resources
◦ Denial of service – prevention of legitimate use

• Methods of violation:
◦ Masquerading – pretending to be an authorized user
◦ Man-in-the-middle – intruder sits in data flow, masquerading as sender to receiver and vice versa
◦ Session hijacking – intercept and already established session to bypass authentication

• Effective security must occur at four levels: physical, human, operating system, network
• Program threats: trojan horse (spyware, pop-up, etc.), trap door, logic bomb, stack and buffer overflow
• Viruses: code fragment embedded in legitimate program; self-replicating

◦ Specific to CPU architecture, OS, applications
◦ Virus dropper: inserts virus onto the system

• Windows is the target for most attacks – most common, everyone is administrator
• Worms: use spawn mechanism – standalone program
• Port scanning: automated attempt to connect to a range of ports on one or a range of IP addresses

◦ Frequently launched from zombie systems to decrease traceability
• Denial of service: overload targeted computer preventing it from doing useful work
• Cryptography: means to constrain potential senders and/or receivers – based on keys

◦ Allows for confirmation of source, receipt by specified destination, trust relationship
• Encryption: [K of keys], [M of messages], [C of ciphertexts], function E:K to encrypt, function D:K to decrypt

◦ Can have symmetric and asymmetric (distributes public encryption key, holds private decipher key) encryption
▪ Asymmetric is much more compute intensive – not used for bulk data transaction
▪ Keys can be stored on a key ring

• Authentication: constraining a set of potential senders of a message
◦ Helps to prove that the message is unmodified
◦ Hash functions are basis of authentication

▪ Creates small, fixed-size block of data (message digest, hash value)
• Symmetric encryption used in message-authentication code (MAC)
• Authenticators produced from authentication algorithm are digital signatures
• Authentication requires fewer computations than encryption methods
• Digital Certificates: proof of who or what owns a public key
• Defense in depth: most common security theory – multiple layers of security
• Can attempt to detect intrusion:

◦ Signature-based: detect “bad patterns”
◦ Anomaly detection: spots differences from normal behavior

▪ Both can report false positives or false negatives
◦ Auditing, accounting, and logging specific system or network activity

Man-in-the-middle attack - Asymmetric
Cryptography

Ch.15 – Security Continued

• Firewall: placed between trusted and untrusted hosts
◦ Limits network access between the two domains
◦ Can be tunneled or spoofed

• Personal firewall is software layer on given host
◦ Can monitor/limit traffic to/from host

• Application proxy firewall: Understands application protocol and can control them
• System-call firewall: Monitors all important system calls and apply rules and restrictions to them

