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Chapter 8:  Memory Management 

 Background 
 Swapping  
 Contiguous Memory Allocation 
 Segmentation 
 Paging 
 Structure of the Page Table 
 Example: The Intel 32 and 64-bit Architectures 
 Example: ARM Architecture 
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Objectives 

 To provide a detailed description of various ways of 
organizing memory hardware 

 To discuss various memory-management techniques, 
including paging and segmentation 

 To provide a detailed description of the Intel Pentium, which 
supports both pure segmentation and segmentation with 
paging 
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Background 

 Program must be brought (from disk)  into memory and 
placed within a process for it to be run 

 Main memory and registers are only storage CPU can 
access directly 

 Memory unit only sees a stream of addresses + read 
requests, or address + data and write requests 

 Register access in one CPU clock (or less) 

 Main memory can take many cycles, causing a stall 

 Cache sits between main memory and CPU registers 

 Protection of memory required to ensure correct operation 
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Base and Limit Registers 

 A pair of base and limit registers define the logical address space 
 CPU must check every memory access generated in user mode to 

be sure it is between base and limit for that user 
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Hardware Address Protection 
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Address Binding 

 Programs on disk, ready to be brought into memory to execute form an 
input queue 
 Without support, must be loaded into address 0000 

 Inconvenient to have first user process physical address always at 0000  
 How can it not be? 

 Further, addresses represented in different ways at different stages of a 
program’s life 
 Source code addresses usually symbolic 
 Compiled code addresses bind to relocatable addresses 

 i.e. “14 bytes from beginning of this module” 
 Linker or loader will bind relocatable addresses to absolute addresses 

 i.e. 74014 
 Each binding maps one address space to another 
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Binding of Instructions and Data to Memory 
 
 Address binding of instructions and data to memory addresses 

can happen at three different stages 
 Compile time:  If memory location known a priori, absolute 

code can be generated; must recompile code if starting 
location changes 

 Load time:  Must generate relocatable code if memory 
location is not known at compile time 

 Execution time:  Binding delayed until run time if the 
process can be moved during its execution from one memory 
segment to another 
 Need hardware support for address maps (e.g., base and 

limit registers) 
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Multistep Processing of a User Program  
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Logical vs. Physical Address Space 

 The concept of a logical address space that is bound to a 
separate physical address space is central to proper memory 
management 
 Logical address – generated by the CPU; also referred to 

as virtual address 
 Physical address – address seen by the memory unit 

 Logical and physical addresses are the same in compile-time 
and load-time address-binding schemes; logical (virtual) and 
physical addresses differ in execution-time address-binding 
scheme 

 Logical address space is the set of all logical addresses 
generated by a program 

 Physical address space is the set of all physical addresses 
generated by a program 
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Memory-Management Unit (MMU) 

 Hardware device that at run time maps virtual to physical 
address 

 Many methods possible, covered in the rest of this chapter 
 To start, consider simple scheme where the value in the 

relocation register is added to every address generated by a 
user process at the time it is sent to memory 
 Base register now called relocation register 
 MS-DOS on Intel 80x86 used 4 relocation registers 

 The user program deals with logical addresses; it never sees the 
real physical addresses 
 Execution-time binding occurs when reference is made to 

location in memory 
 Logical address bound to physical addresses 
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Dynamic relocation using a relocation register 

 Routine is not loaded until it is 
called 

 Better memory-space utilization; 
unused routine is never loaded 

 All routines kept on disk in 
relocatable load format 

 Useful when large amounts of 
code are needed to handle 
infrequently occurring cases 

 No special support from the 
operating system is required 
 Implemented through program 

design 
 OS can help by providing libraries 

to implement dynamic loading 
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Dynamic Linking 

 Static linking – system libraries and program code combined by 
the loader into the binary program image 

 Dynamic linking –linking postponed until execution time 

 Small piece of code, stub, used to locate the appropriate 
memory-resident library routine 

 Stub replaces itself with the address of the routine, and executes 
the routine 

 Operating system checks if routine is in processes’ memory 
address 
 If not in address space, add to address space 

 Dynamic linking is particularly useful for libraries 

 System also known as shared libraries 
 Consider applicability to patching system libraries 

 Versioning may be needed 
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Swapping 

 A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for continued 
execution 
 Total physical memory space of processes can exceed 

physical memory 
 Backing store – fast disk large enough to accommodate copies 

of all memory images for all users; must provide direct access to 
these memory images 

 Roll out, roll in – swapping variant used for priority-based 
scheduling algorithms; lower-priority process is swapped out so 
higher-priority process can be loaded and executed 

 Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped 

 System maintains a ready queue of ready-to-run processes 
which have memory images on disk 
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Swapping (Cont.) 
 Does the swapped out process need to swap back in to same 

physical addresses? 
 Depends on address binding method 

 Plus consider pending I/O to / from process memory space 
 Modified versions of swapping are found on many systems (i.e., 

UNIX, Linux, and Windows) 
 Swapping normally disabled 
 Started if more than threshold amount of memory allocated 
 Disabled again once memory demand reduced below 

threshold 
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Schematic View of Swapping 
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Context Switch Time including Swapping 

 If next processes to be put on CPU is not in memory, need to 
swap out a process and swap in target process 

 Context switch time can then be very high 
 100MB process swapping to hard disk with transfer rate of 

50MB/sec 
 Swap out time of 2000 ms 
 Plus swap in of same sized process 
 Total context switch swapping component time of 4000ms 

(4 seconds) 
 Can reduce if reduce size of memory swapped – by knowing 

how much memory really being used 
 System calls to inform OS of memory use via 

request_memory() and release_memory() 



8.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Context Switch Time and Swapping (Cont.) 

 Other constraints as well on swapping 
 Pending I/O – can’t swap out as I/O would occur to wrong 

process 
 Or always transfer I/O to kernel space, then to I/O device 

 Known as double buffering, adds overhead 
 Standard swapping not used in modern operating systems 

 But modified version common 
 Swap only when free memory extremely low 
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Swapping on Mobile Systems 

 Not typically supported 
 Flash memory based 

 Small amount of space 
 Limited number of write cycles 
 Poor throughput between flash memory and CPU on mobile 

platform 
 Instead use other methods to free memory if low 

 iOS asks apps to voluntarily relinquish allocated memory 
 Read-only data thrown out and reloaded from flash if needed 
 Failure to free can result in termination 

 Android terminates apps if low free memory, but first writes 
application state to flash for fast restart 

 Both OSes support paging as discussed below 
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Contiguous Allocation 

 Main memory must support both OS and user processes 
 Limited resource, must allocate efficiently 
 Contiguous allocation is one early method 
 Main memory usually into two partitions: 

 Resident operating system, usually held in low memory with 
interrupt vector 

 User processes then held in high memory 
 Each process contained in single contiguous section of 

memory 
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Contiguous Allocation (Cont.) 

 Relocation registers used to protect user processes from each 
other, and from changing operating-system code and data 
 Base register contains value of smallest physical address 
 Limit register contains range of logical addresses – each 

logical address must be less than the limit register  
 MMU maps logical address dynamically 
 Can then allow actions such as kernel code being transient 

and kernel changing size 
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Hardware Support for Relocation and Limit Registers 
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Multiple-partition allocation 
 

 Multiple-partition allocation 
 Degree of multiprogramming limited by number of partitions 
 Variable-partition sizes for efficiency (sized to a given process’ needs) 
 Hole – block of available memory; holes of various size are scattered 

throughout memory 
 When a process arrives, it is allocated memory from a hole large enough to 

accommodate it 
 Process exiting frees its partition, adjacent free partitions combined 
 Operating system maintains information about: 

a) allocated partitions    b) free partitions (hole) 
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Dynamic Storage-Allocation Problem 

 First-fit:  Allocate the first hole that is big enough 
 
 Best-fit:  Allocate the smallest hole that is big enough; must 

search entire list, unless ordered by size   
 Produces the smallest leftover hole 
 

 Worst-fit:  Allocate the largest hole; must also search entire list   
 Produces the largest leftover hole 

How to satisfy a request of size n from a list of free holes? 

First-fit and best-fit better than worst-fit in terms of speed and storage 
utilization 



8.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Fragmentation 

 External Fragmentation – total memory space exists to 
satisfy a request, but it is not contiguous 

 Internal Fragmentation – allocated memory may be slightly 
larger than requested memory; this size difference is memory 
internal to a partition, but not being used 

 First fit analysis reveals that given N blocks allocated, 0.5 N 
blocks lost to fragmentation 
 1/3 may be unusable -> 50-percent rule 
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Fragmentation (Cont.) 

 Reduce external fragmentation by compaction 
 Shuffle memory contents to place all free memory together 

in one large block 
 Compaction is possible only if relocation is dynamic, and is 

done at execution time 
 I/O problem 

 Latch job in memory while it is involved in I/O 
 Do I/O only into OS buffers 

 Now consider that backing store has same fragmentation 
problems 
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Segmentation 

 Memory-management scheme that supports user view of memory  

 A program is a collection of segments 
 A segment is a logical unit such as: 

  main program 
  procedure  
  function 
  method 
  object 
  local variables, global variables 
  common block 
  stack 
  symbol table 
  arrays 
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User’s View of a Program 
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Logical View of Segmentation 

1 

3 

2 

4 

1 

4 

2 

3 

user space  physical memory space 



8.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Segmentation Architecture  

 Logical address consists of a two tuple: 
  <segment-number, offset>, 
 

 Segment table – maps two-dimensional physical addresses; each 
table entry has: 
 base – contains the starting physical address where the 

segments reside in memory 
 limit – specifies the length of the segment 

 

 Segment-table base register (STBR) points to the segment 
table’s location in memory 
 

 Segment-table length register (STLR) indicates number of 
segments used by a program; 

                   segment number s is legal if s < STLR 
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Segmentation Architecture (Cont.) 

 Protection 
 With each entry in segment table associate: 

 validation bit = 0 ⇒ illegal segment 
 read/write/execute privileges 

 Protection bits associated with segments; code sharing 
occurs at segment level 

 Since segments vary in length, memory allocation is a 
dynamic storage-allocation problem 

 A segmentation example is shown in the following diagram 
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Segmentation Hardware 
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Paging 

 Physical  address space of a process can be noncontiguous; 
process is allocated physical memory whenever the latter is 
available 
 Avoids external fragmentation 
 Avoids problem of varying sized memory chunks 

 Divide physical memory into fixed-sized blocks called frames 
 Size is power of 2, between 512 bytes and 16 Mbytes 

 Divide logical memory into blocks of same size called pages 

 Keep track of all free frames 

 To run a program of size N pages, need to find N free frames and 
load program 

 Set up a page table to translate logical to physical addresses 

 Backing store likewise split into pages 
 Still have Internal fragmentation 
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Address Translation Scheme 

 Address generated by CPU is divided into: 
 Page number (p) – used as an index into a page table which 

contains base address of each page in physical memory 
 Page offset (d) – combined with base address to define the 

physical memory address that is sent to the memory unit 
 
 

 
 

 For given logical address space 2m and page size 2n 

page number page offset

p d

m -n n
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Paging Hardware 
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Paging Model of Logical and  Physical Memory 
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Paging Example 

n=2 and m=4   32-byte memory and 4-byte pages 
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Paging (Cont.) 

 Calculating internal fragmentation 
 Page size = 2,048 bytes 
 Process size = 72,766 bytes 
 35 pages + 1,086 bytes 
 Internal fragmentation of 2,048 - 1,086 = 962 bytes 
 Worst case fragmentation = 1 frame – 1 byte 
 On average fragmentation = 1 / 2 frame size 
 So small frame sizes desirable? 
 But each page table entry takes memory to track 
 Page sizes growing over time 

 Solaris supports two page sizes – 8 KB and 4 MB 
 Process view and physical memory now very different 
 By implementation process can only access its own memory 
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Free Frames 

Before allocation After allocation 
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Implementation of Page Table 

 Page table is kept in main memory 
 Page-table base register (PTBR) points to the page table 
 Page-table length register (PTLR) indicates size of the page 

table 
 In this scheme every data/instruction access requires two 

memory accesses 
 One for the page table and one for the data / instruction 

 The two memory access problem can be solved by the use of 
a special fast-lookup hardware cache called associative 
memory or translation look-aside buffers (TLBs) 
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Implementation of Page Table (Cont.) 

 Some TLBs store address-space identifiers (ASIDs) in each 
TLB entry – uniquely identifies each process to provide 
address-space protection for that process 
 Otherwise need to flush at every context switch 

 TLBs typically small (64 to 1,024 entries) 
 On a TLB miss, value is loaded into the TLB for faster access 

next time 
 Replacement policies must be considered 
 Some entries can be wired down for permanent fast 

access 
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Associative Memory 

 Associative memory – parallel search  
 
 
 
 

 
 Address translation (p, d) 

 If p is in associative register, get frame # out 
 Otherwise get frame # from page table in memory 

 

Page # Frame #
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Paging Hardware With TLB 
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Effective Access Time 

 Associative Lookup = ε time unit 
 Can be < 10% of memory access time 

 Hit ratio = α 
 Hit ratio – percentage of times that a page number is found in the 

associative registers; ratio related to number of associative 
registers 

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access 
 Effective Access Time (EAT) 
  EAT = (1 + ε) α + (2 + ε)(1 – α) 
   = 2 + ε – α 
  Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access 

 EAT = 0.80 x 100 + 0.20 x 200 = 120ns 
 Consider more realistic hit ratio ->  α = 99%, ε = 20ns for TLB search, 

100ns for memory access 
 EAT = 0.99 x 100 + 0.01 x 200 = 101ns 
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Memory Protection 

 Memory protection implemented by associating protection bit 
with each frame to indicate if read-only or read-write access is 
allowed 
 Can also add more bits to indicate page execute-only, and 

so on 
 Valid-invalid bit attached to each entry in the page table: 

 “valid” indicates that the associated page is in the 
process’ logical address space, and is thus a legal page 

 “invalid” indicates that the page is not in the process’ 
logical address space 

 Or use page-table length register (PTLR) 
 Any violations result in a trap to the kernel 
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Valid (v) or Invalid (i) Bit In A Page Table 
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Shared Pages 

 Shared code 
 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems) 
 Similar to multiple threads sharing the same process space 
 Also useful for interprocess communication if sharing of 

read-write pages is allowed 
 Private code and data  

 Each process keeps a separate copy of the code and data 
 The pages for the private code and data can appear 

anywhere in the logical address space 
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Shared Pages Example 
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Structure of the Page Table 

 Memory structures for paging can get huge using straight-
forward methods 
 Consider a 32-bit logical address space as on modern 

computers 
 Page size of 4 KB (212) 
 Page table would have 1 million entries (232 / 212) 
 If each entry is 4 bytes -> 4 MB of physical address space / 

memory for page table alone 
 That amount of memory used to cost a lot 
 Don’t want to allocate that contiguously in main memory 

 Hierarchical Paging 
 Hashed Page Tables 
 Inverted Page Tables 



8.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition 

Hierarchical Page Tables 

 Break up the logical address space into multiple page 
tables 

 A simple technique is a two-level page table 
 We then page the page table 
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Two-Level Page-Table Scheme 
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Two-Level Paging Example 

 A logical address (on 32-bit machine with 1K page size) is divided into: 
 a page number consisting of 22 bits 
 a page offset consisting of 10 bits 

 

 Since the page table is paged, the page number is further divided into: 
 a 12-bit page number  
 a 10-bit page offset 

 

 Thus, a logical address is as follows: 
 
 
 
 
 
 

 where p1 is an index into the outer page table, and p2 is the 
displacement within the page of the inner page table 

 Known as forward-mapped page table 
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Address-Translation Scheme 
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64-bit Logical Address Space 

 Even two-level paging scheme not sufficient 
 If page size is 4 KB (212) 

 Then page table has 252 entries 
 If two level scheme, inner page tables could be 210 4-byte entries 
 Address would look like 

 
 

 
 Outer page table has 242 entries or 244 bytes 
 One solution is to add a 2nd outer page table 
 But in the following example the 2nd outer page table is still 234 bytes in 

size 
 And possibly 4 memory access to get to one physical memory 

location 
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Three-level Paging Scheme 
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Hashed Page Tables 

 Common in address spaces > 32 bits 
 The virtual page number is hashed into a page table 

 This page table contains a chain of elements hashing to the same 
location 

 Each element contains (1) the virtual page number (2) the value of the 
mapped page frame (3) a pointer to the next element 

 Virtual page numbers are compared in this chain searching for a 
match 
 If a match is found, the corresponding physical frame is extracted 

 Variation for 64-bit addresses is clustered page tables 
 Similar to hashed but each entry refers to several pages (such as 

16) rather than 1 
 Especially useful for sparse address spaces (where memory 

references are non-contiguous and scattered)  
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Hashed Page Table 
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Inverted Page Table 

 Rather than each process having a page table and keeping track 
of all possible logical pages, track all physical pages 

 One entry for each real page of memory 
 Entry consists of the virtual address of the page stored in that 

real memory location, with information about the process that 
owns that page 

 Decreases memory needed to store each page table, but 
increases time needed to search the table when a page 
reference occurs 

 Use hash table to limit the search to one — or at most a few — 
page-table entries 
 TLB can accelerate access 

 But how to implement shared memory? 
 One mapping of a virtual address to the shared physical 

address 
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Inverted Page Table Architecture 
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Oracle SPARC Solaris 
 Consider modern, 64-bit operating system example with tightly 

integrated HW 
 Goals are efficiency, low overhead 

 Based on hashing, but more complex 
 Two hash tables 

 One kernel and one for all user processes 
 Each maps memory addresses from virtual to physical memory 
 Each entry represents a contiguous area of mapped virtual 

memory, 
More efficient than having a separate hash-table entry for 

each page 
 Each entry has  base address and  span (indicating the number 

of pages the entry represents) 
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Oracle SPARC Solaris (Cont.) 

 TLB holds translation table entries (TTEs) for fast hardware lookups 
 A cache of TTEs reside in a translation storage buffer (TSB) 

 Includes an entry per recently accessed page 
 Virtual address reference causes TLB search  

 If miss, hardware walks the in-memory TSB looking for the TTE 
corresponding to the address 
 If match found, the CPU copies the TSB entry into the TLB 

and translation completes 
 If no match found, kernel interrupted to search the hash table 

– The kernel then creates a TTE from the appropriate hash 
table and stores it in the TSB, Interrupt handler returns 
control to the MMU, which completes the address 
translation.  
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Example: The Intel 32 and 64-bit Architectures 

 Dominant industry chips 
 

 Pentium CPUs are 32-bit and called IA-32 architecture 
 

 Current Intel CPUs are 64-bit and called IA-64 architecture 
 

 Many variations in the chips, cover the main ideas here 
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Example: The Intel IA-32 Architecture 

 Supports both segmentation and segmentation with paging 
 Each segment can be 4 GB 
 Up to 16 K segments per process 
 Divided into two partitions 

 First partition of up to 8 K segments are private to 
process (kept in local descriptor table (LDT)) 

 Second partition of up to 8K segments shared among all 
processes (kept in global descriptor table (GDT)) 
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Example: The Intel IA-32 Architecture (Cont.) 

 CPU generates logical address 
 Selector given to segmentation unit 

Which produces linear addresses  
 

 
 Linear address given to paging unit 

Which generates physical address in main memory 
 Paging units form equivalent of MMU 
 Pages sizes can be 4 KB or 4 MB 
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Logical to Physical Address Translation in IA-32 
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Intel IA-32 Segmentation 
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Intel IA-32 Paging Architecture 
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Intel IA-32 Page Address Extensions 
 32-bit address limits led Intel to create page address extension (PAE), 

allowing 32-bit apps access to more than 4GB of memory space 
 Paging went to a 3-level scheme 
 Top two bits refer to a page directory pointer table 
 Page-directory and page-table entries moved to 64-bits in size 
 Net effect is increasing address space to 36 bits – 64GB of physical 

memory 
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Intel x86-64 

 Current generation Intel x86 architecture 
 64 bits is ginormous (> 16 exabytes) 
 In practice only implement 48 bit addressing 

 Page sizes of 4 KB, 2 MB, 1 GB 
 Four levels of paging hierarchy 

 Can also use PAE so virtual addresses are 48 bits and physical 
addresses are 52 bits 
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Example: ARM Architecture 

 Dominant mobile platform chip 
(Apple iOS and Google Android 
devices for example) 

 Modern, energy efficient, 32-bit 
CPU 

 4 KB and 16 KB pages 
 1 MB and 16 MB pages (termed 

sections) 
 One-level paging for sections, two-

level for smaller pages 
 Two levels of TLBs 

 Outer level has two micro 
TLBs (one data, one 
instruction) 

 Inner is single main TLB 
 First inner is checked, on 

miss outers are checked, 
and on miss page table 
walk performed by CPU 
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End of Chapter 8 
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