
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 8: Main Memory

8.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 8: Memory Management

 Background
 Swapping
 Contiguous Memory Allocation
 Segmentation
 Paging
 Structure of the Page Table
 Example: The Intel 32 and 64-bit Architectures
 Example: ARM Architecture

8.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Objectives

 To provide a detailed description of various ways of
organizing memory hardware

 To discuss various memory-management techniques,
including paging and segmentation

 To provide a detailed description of the Intel Pentium, which
supports both pure segmentation and segmentation with
paging

8.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Background

 Program must be brought (from disk) into memory and
placed within a process for it to be run

 Main memory and registers are only storage CPU can
access directly

 Memory unit only sees a stream of addresses + read
requests, or address + data and write requests

 Register access in one CPU clock (or less)

 Main memory can take many cycles, causing a stall

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

8.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Base and Limit Registers

 A pair of base and limit registers define the logical address space
 CPU must check every memory access generated in user mode to

be sure it is between base and limit for that user

8.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Hardware Address Protection

8.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Address Binding

 Programs on disk, ready to be brought into memory to execute form an
input queue
 Without support, must be loaded into address 0000

 Inconvenient to have first user process physical address always at 0000
 How can it not be?

 Further, addresses represented in different ways at different stages of a
program’s life
 Source code addresses usually symbolic
 Compiled code addresses bind to relocatable addresses

 i.e. “14 bytes from beginning of this module”
 Linker or loader will bind relocatable addresses to absolute addresses

 i.e. 74014
 Each binding maps one address space to another

8.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses

can happen at three different stages
 Compile time: If memory location known a priori, absolute

code can be generated; must recompile code if starting
location changes

 Load time: Must generate relocatable code if memory
location is not known at compile time

 Execution time: Binding delayed until run time if the
process can be moved during its execution from one memory
segment to another
 Need hardware support for address maps (e.g., base and

limit registers)

8.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multistep Processing of a User Program

8.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a
separate physical address space is central to proper memory
management
 Logical address – generated by the CPU; also referred to

as virtual address
 Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time
and load-time address-binding schemes; logical (virtual) and
physical addresses differ in execution-time address-binding
scheme

 Logical address space is the set of all logical addresses
generated by a program

 Physical address space is the set of all physical addresses
generated by a program

8.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Memory-Management Unit (MMU)

 Hardware device that at run time maps virtual to physical
address

 Many methods possible, covered in the rest of this chapter
 To start, consider simple scheme where the value in the

relocation register is added to every address generated by a
user process at the time it is sent to memory
 Base register now called relocation register
 MS-DOS on Intel 80x86 used 4 relocation registers

 The user program deals with logical addresses; it never sees the
real physical addresses
 Execution-time binding occurs when reference is made to

location in memory
 Logical address bound to physical addresses

8.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic relocation using a relocation register

 Routine is not loaded until it is
called

 Better memory-space utilization;
unused routine is never loaded

 All routines kept on disk in
relocatable load format

 Useful when large amounts of
code are needed to handle
infrequently occurring cases

 No special support from the
operating system is required
 Implemented through program

design
 OS can help by providing libraries

to implement dynamic loading

8.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic Linking

 Static linking – system libraries and program code combined by
the loader into the binary program image

 Dynamic linking –linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate
memory-resident library routine

 Stub replaces itself with the address of the routine, and executes
the routine

 Operating system checks if routine is in processes’ memory
address
 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries
 Consider applicability to patching system libraries

 Versioning may be needed

8.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution
 Total physical memory space of processes can exceed

physical memory
 Backing store – fast disk large enough to accommodate copies

of all memory images for all users; must provide direct access to
these memory images

 Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

8.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Swapping (Cont.)
 Does the swapped out process need to swap back in to same

physical addresses?
 Depends on address binding method

 Plus consider pending I/O to / from process memory space
 Modified versions of swapping are found on many systems (i.e.,

UNIX, Linux, and Windows)
 Swapping normally disabled
 Started if more than threshold amount of memory allocated
 Disabled again once memory demand reduced below

threshold

8.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Schematic View of Swapping

8.17 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to
swap out a process and swap in target process

 Context switch time can then be very high
 100MB process swapping to hard disk with transfer rate of

50MB/sec
 Swap out time of 2000 ms
 Plus swap in of same sized process
 Total context switch swapping component time of 4000ms

(4 seconds)
 Can reduce if reduce size of memory swapped – by knowing

how much memory really being used
 System calls to inform OS of memory use via

request_memory() and release_memory()

8.18 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Context Switch Time and Swapping (Cont.)

 Other constraints as well on swapping
 Pending I/O – can’t swap out as I/O would occur to wrong

process
 Or always transfer I/O to kernel space, then to I/O device

 Known as double buffering, adds overhead
 Standard swapping not used in modern operating systems

 But modified version common
 Swap only when free memory extremely low

8.19 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Swapping on Mobile Systems

 Not typically supported
 Flash memory based

 Small amount of space
 Limited number of write cycles
 Poor throughput between flash memory and CPU on mobile

platform
 Instead use other methods to free memory if low

 iOS asks apps to voluntarily relinquish allocated memory
 Read-only data thrown out and reloaded from flash if needed
 Failure to free can result in termination

 Android terminates apps if low free memory, but first writes
application state to flash for fast restart

 Both OSes support paging as discussed below

8.20 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Contiguous Allocation

 Main memory must support both OS and user processes
 Limited resource, must allocate efficiently
 Contiguous allocation is one early method
 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with
interrupt vector

 User processes then held in high memory
 Each process contained in single contiguous section of

memory

8.21 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Contiguous Allocation (Cont.)

 Relocation registers used to protect user processes from each
other, and from changing operating-system code and data
 Base register contains value of smallest physical address
 Limit register contains range of logical addresses – each

logical address must be less than the limit register
 MMU maps logical address dynamically
 Can then allow actions such as kernel code being transient

and kernel changing size

8.22 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Hardware Support for Relocation and Limit Registers

8.23 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-partition allocation

 Multiple-partition allocation
 Degree of multiprogramming limited by number of partitions
 Variable-partition sizes for efficiency (sized to a given process’ needs)
 Hole – block of available memory; holes of various size are scattered

throughout memory
 When a process arrives, it is allocated memory from a hole large enough to

accommodate it
 Process exiting frees its partition, adjacent free partitions combined
 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

8.24 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must

search entire list, unless ordered by size
 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list
 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage
utilization

8.25 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Fragmentation

 External Fragmentation – total memory space exists to
satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

 First fit analysis reveals that given N blocks allocated, 0.5 N
blocks lost to fragmentation
 1/3 may be unusable -> 50-percent rule

8.26 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Fragmentation (Cont.)

 Reduce external fragmentation by compaction
 Shuffle memory contents to place all free memory together

in one large block
 Compaction is possible only if relocation is dynamic, and is

done at execution time
 I/O problem

 Latch job in memory while it is involved in I/O
 Do I/O only into OS buffers

 Now consider that backing store has same fragmentation
problems

8.27 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments
 A segment is a logical unit such as:

 main program
 procedure
 function
 method
 object
 local variables, global variables
 common block
 stack
 symbol table
 arrays

8.28 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

User’s View of a Program

8.29 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.30 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Architecture

 Logical address consists of a two tuple:
 <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each
table entry has:
 base – contains the starting physical address where the

segments reside in memory
 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment
table’s location in memory

 Segment-table length register (STLR) indicates number of
segments used by a program;

 segment number s is legal if s < STLR

8.31 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Architecture (Cont.)

 Protection
 With each entry in segment table associate:

 validation bit = 0 ⇒ illegal segment
 read/write/execute privileges

 Protection bits associated with segments; code sharing
occurs at segment level

 Since segments vary in length, memory allocation is a
dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

8.32 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Hardware

8.33 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging

 Physical address space of a process can be noncontiguous;
process is allocated physical memory whenever the latter is
available
 Avoids external fragmentation
 Avoids problem of varying sized memory chunks

 Divide physical memory into fixed-sized blocks called frames
 Size is power of 2, between 512 bytes and 16 Mbytes

 Divide logical memory into blocks of same size called pages

 Keep track of all free frames

 To run a program of size N pages, need to find N free frames and
load program

 Set up a page table to translate logical to physical addresses

 Backing store likewise split into pages
 Still have Internal fragmentation

8.34 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Address Translation Scheme

 Address generated by CPU is divided into:
 Page number (p) – used as an index into a page table which

contains base address of each page in physical memory
 Page offset (d) – combined with base address to define the

physical memory address that is sent to the memory unit

 For given logical address space 2m and page size 2n

page number page offset

p d

m -n n

8.35 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging Hardware

8.36 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging Model of Logical and Physical Memory

8.37 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

8.38 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging (Cont.)

 Calculating internal fragmentation
 Page size = 2,048 bytes
 Process size = 72,766 bytes
 35 pages + 1,086 bytes
 Internal fragmentation of 2,048 - 1,086 = 962 bytes
 Worst case fragmentation = 1 frame – 1 byte
 On average fragmentation = 1 / 2 frame size
 So small frame sizes desirable?
 But each page table entry takes memory to track
 Page sizes growing over time

 Solaris supports two page sizes – 8 KB and 4 MB
 Process view and physical memory now very different
 By implementation process can only access its own memory

8.39 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Free Frames

Before allocation After allocation

8.40 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Implementation of Page Table

 Page table is kept in main memory
 Page-table base register (PTBR) points to the page table
 Page-table length register (PTLR) indicates size of the page

table
 In this scheme every data/instruction access requires two

memory accesses
 One for the page table and one for the data / instruction

 The two memory access problem can be solved by the use of
a special fast-lookup hardware cache called associative
memory or translation look-aside buffers (TLBs)

8.41 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Implementation of Page Table (Cont.)

 Some TLBs store address-space identifiers (ASIDs) in each
TLB entry – uniquely identifies each process to provide
address-space protection for that process
 Otherwise need to flush at every context switch

 TLBs typically small (64 to 1,024 entries)
 On a TLB miss, value is loaded into the TLB for faster access

next time
 Replacement policies must be considered
 Some entries can be wired down for permanent fast

access

8.42 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out
 Otherwise get frame # from page table in memory

Page # Frame #

8.43 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Paging Hardware With TLB

8.44 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Effective Access Time

 Associative Lookup = ε time unit
 Can be < 10% of memory access time

 Hit ratio = α
 Hit ratio – percentage of times that a page number is found in the

associative registers; ratio related to number of associative
registers

 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access
 Effective Access Time (EAT)
 EAT = (1 + ε) α + (2 + ε)(1 – α)
 = 2 + ε – α
 Consider α = 80%, ε = 20ns for TLB search, 100ns for memory access

 EAT = 0.80 x 100 + 0.20 x 200 = 120ns
 Consider more realistic hit ratio -> α = 99%, ε = 20ns for TLB search,

100ns for memory access
 EAT = 0.99 x 100 + 0.01 x 200 = 101ns

8.45 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Memory Protection

 Memory protection implemented by associating protection bit
with each frame to indicate if read-only or read-write access is
allowed
 Can also add more bits to indicate page execute-only, and

so on
 Valid-invalid bit attached to each entry in the page table:

 “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal page

 “invalid” indicates that the page is not in the process’
logical address space

 Or use page-table length register (PTLR)
 Any violations result in a trap to the kernel

8.46 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Valid (v) or Invalid (i) Bit In A Page Table

8.47 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Shared Pages

 Shared code
 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems)
 Similar to multiple threads sharing the same process space
 Also useful for interprocess communication if sharing of

read-write pages is allowed
 Private code and data

 Each process keeps a separate copy of the code and data
 The pages for the private code and data can appear

anywhere in the logical address space

8.48 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Shared Pages Example

8.49 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Structure of the Page Table

 Memory structures for paging can get huge using straight-
forward methods
 Consider a 32-bit logical address space as on modern

computers
 Page size of 4 KB (212)
 Page table would have 1 million entries (232 / 212)
 If each entry is 4 bytes -> 4 MB of physical address space /

memory for page table alone
 That amount of memory used to cost a lot
 Don’t want to allocate that contiguously in main memory

 Hierarchical Paging
 Hashed Page Tables
 Inverted Page Tables

8.50 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Hierarchical Page Tables

 Break up the logical address space into multiple page
tables

 A simple technique is a two-level page table
 We then page the page table

8.51 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Two-Level Page-Table Scheme

8.52 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:
 a page number consisting of 22 bits
 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:
 a 12-bit page number
 a 10-bit page offset

 Thus, a logical address is as follows:

 where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

 Known as forward-mapped page table

8.53 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Address-Translation Scheme

8.54 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)

 Then page table has 252 entries
 If two level scheme, inner page tables could be 210 4-byte entries
 Address would look like

 Outer page table has 242 entries or 244 bytes
 One solution is to add a 2nd outer page table
 But in the following example the 2nd outer page table is still 234 bytes in

size
 And possibly 4 memory access to get to one physical memory

location

8.55 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Three-level Paging Scheme

8.56 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Hashed Page Tables

 Common in address spaces > 32 bits
 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same
location

 Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

 Virtual page numbers are compared in this chain searching for a
match
 If a match is found, the corresponding physical frame is extracted

 Variation for 64-bit addresses is clustered page tables
 Similar to hashed but each entry refers to several pages (such as

16) rather than 1
 Especially useful for sparse address spaces (where memory

references are non-contiguous and scattered)

8.57 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Hashed Page Table

8.58 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Inverted Page Table

 Rather than each process having a page table and keeping track
of all possible logical pages, track all physical pages

 One entry for each real page of memory
 Entry consists of the virtual address of the page stored in that

real memory location, with information about the process that
owns that page

 Decreases memory needed to store each page table, but
increases time needed to search the table when a page
reference occurs

 Use hash table to limit the search to one — or at most a few —
page-table entries
 TLB can accelerate access

 But how to implement shared memory?
 One mapping of a virtual address to the shared physical

address

8.59 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Inverted Page Table Architecture

8.60 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Oracle SPARC Solaris
 Consider modern, 64-bit operating system example with tightly

integrated HW
 Goals are efficiency, low overhead

 Based on hashing, but more complex
 Two hash tables

 One kernel and one for all user processes
 Each maps memory addresses from virtual to physical memory
 Each entry represents a contiguous area of mapped virtual

memory,
More efficient than having a separate hash-table entry for

each page
 Each entry has base address and span (indicating the number

of pages the entry represents)

8.61 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Oracle SPARC Solaris (Cont.)

 TLB holds translation table entries (TTEs) for fast hardware lookups
 A cache of TTEs reside in a translation storage buffer (TSB)

 Includes an entry per recently accessed page
 Virtual address reference causes TLB search

 If miss, hardware walks the in-memory TSB looking for the TTE
corresponding to the address
 If match found, the CPU copies the TSB entry into the TLB

and translation completes
 If no match found, kernel interrupted to search the hash table

– The kernel then creates a TTE from the appropriate hash
table and stores it in the TSB, Interrupt handler returns
control to the MMU, which completes the address
translation.

8.62 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example: The Intel 32 and 64-bit Architectures

 Dominant industry chips

 Pentium CPUs are 32-bit and called IA-32 architecture

 Current Intel CPUs are 64-bit and called IA-64 architecture

 Many variations in the chips, cover the main ideas here

8.63 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example: The Intel IA-32 Architecture

 Supports both segmentation and segmentation with paging
 Each segment can be 4 GB
 Up to 16 K segments per process
 Divided into two partitions

 First partition of up to 8 K segments are private to
process (kept in local descriptor table (LDT))

 Second partition of up to 8K segments shared among all
processes (kept in global descriptor table (GDT))

8.64 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example: The Intel IA-32 Architecture (Cont.)

 CPU generates logical address
 Selector given to segmentation unit

Which produces linear addresses

 Linear address given to paging unit

Which generates physical address in main memory
 Paging units form equivalent of MMU
 Pages sizes can be 4 KB or 4 MB

8.65 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Logical to Physical Address Translation in IA-32

8.66 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intel IA-32 Segmentation

8.67 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intel IA-32 Paging Architecture

8.68 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intel IA-32 Page Address Extensions
 32-bit address limits led Intel to create page address extension (PAE),

allowing 32-bit apps access to more than 4GB of memory space
 Paging went to a 3-level scheme
 Top two bits refer to a page directory pointer table
 Page-directory and page-table entries moved to 64-bits in size
 Net effect is increasing address space to 36 bits – 64GB of physical

memory

8.69 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Intel x86-64

 Current generation Intel x86 architecture
 64 bits is ginormous (> 16 exabytes)
 In practice only implement 48 bit addressing

 Page sizes of 4 KB, 2 MB, 1 GB
 Four levels of paging hierarchy

 Can also use PAE so virtual addresses are 48 bits and physical
addresses are 52 bits

8.70 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example: ARM Architecture

 Dominant mobile platform chip
(Apple iOS and Google Android
devices for example)

 Modern, energy efficient, 32-bit
CPU

 4 KB and 16 KB pages
 1 MB and 16 MB pages (termed

sections)
 One-level paging for sections, two-

level for smaller pages
 Two levels of TLBs

 Outer level has two micro
TLBs (one data, one
instruction)

 Inner is single main TLB
 First inner is checked, on

miss outers are checked,
and on miss page table
walk performed by CPU

Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

End of Chapter 8

	Chapter 8: Main Memory
	Chapter 8: Memory Management
	Objectives
	Background
	Base and Limit Registers
	Hardware Address Protection
	Address Binding
	Binding of Instructions and Data to Memory
	Multistep Processing of a User Program
	Logical vs. Physical Address Space
	Memory-Management Unit (MMU)
	Dynamic relocation using a relocation register
	Dynamic Linking
	Swapping
	Swapping (Cont.)
	Schematic View of Swapping
	Context Switch Time including Swapping
	Context Switch Time and Swapping (Cont.)
	Swapping on Mobile Systems
	Contiguous Allocation
	Contiguous Allocation (Cont.)
	Hardware Support for Relocation and Limit Registers
	Multiple-partition allocation�
	Dynamic Storage-Allocation Problem
	Fragmentation
	Fragmentation (Cont.)
	Segmentation
	User’s View of a Program
	Logical View of Segmentation
	Segmentation Architecture
	Segmentation Architecture (Cont.)
	Segmentation Hardware
	Paging
	Address Translation Scheme
	Paging Hardware
	Paging Model of Logical and Physical Memory
	Paging Example
	Paging (Cont.)
	Free Frames
	Implementation of Page Table
	Implementation of Page Table (Cont.)
	Associative Memory
	Paging Hardware With TLB
	Effective Access Time
	Memory Protection
	Valid (v) or Invalid (i) Bit In A Page Table
	Shared Pages
	Shared Pages Example
	Structure of the Page Table
	Hierarchical Page Tables
	Two-Level Page-Table Scheme
	Two-Level Paging Example
	Address-Translation Scheme
	64-bit Logical Address Space
	Three-level Paging Scheme
	Hashed Page Tables
	Hashed Page Table
	Inverted Page Table
	Inverted Page Table Architecture
	Oracle SPARC Solaris
	Oracle SPARC Solaris (Cont.)
	Example: The Intel 32 and 64-bit Architectures
	Example: The Intel IA-32 Architecture
	Example: The Intel IA-32 Architecture (Cont.)
	Logical to Physical Address Translation in IA-32
	Intel IA-32 Segmentation
	Intel IA-32 Paging Architecture
	Intel IA-32 Page Address Extensions
	Intel x86-64
	Example: ARM Architecture
	End of Chapter 8

