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PROCESS SYNCHRONIZATION

OBJECTIVES
* introduce the critical 

section problem, whose 
solutions can be used to 
ensure the consistency of 
shared data

* present software and 
hardware solutions to the 
critical section problem

* examine classical process 
synchronization problems

* explore tools used to solve 
process synchronization 
problems

SECTION 5.1 - Background

* A process may be interrupted 
at any time. Some other 
process could execute 
arbitrary instructions next, 
before the first process is 
able to resume.

* This random interleaving of 
the actions of two processes 
can lead to incorrect usage 
of shared memory or 
resources.

* As an example, our text 
shows how the value of an 
integer variable can be 
corrupted if one process 
tries to increment it as 
another process tries to 
decrement it concurrently 
(or in parallel).

* This kind of situation is 
known as a race condition.

* The points made above 
illustrate the need for the 
OS to support process 
synchronization and 
coordination.

SECTION 5.2 - The Critical 
Section Problem

* We may need to designate 
critical sections in the 
code of groups of processes, 
where they access shared 
resources.  We require that 
no two of them execute in 
their critical sections 
concurrently.

* How do we enforce this 
requirement?  That is the 
critical section problem.

* Most solutions involve 
creating a protocol in which 
a process must get 
permission for exclusive 
access before entering a 
critical section, and must 
release its rights to the 
critical section after 
leaving it.

* One simple way to do this is 
to create a gatekeeper 
process that takes requests 
from the other processes, 
and tells them when they can 
take a turn executing their 
critical sections.  There 
are situations when going 
through such a gatekeeper 
can be a bottleneck to 
performance.

* In this chapter we explore 
distributed solutions to the 
critical section problem, in 
which the processes behave 
symmetrically and cooperate 
as peers to synchronize.

* Typically we insert a 
section of entry code prior 
to each critical section 
(CS).  A process executes 
entry code to gain 
permission to enter the CS.  
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Similarly, we insert a 
section of exit code after 
each CS, which processes use 
to release their rights to 
executed in the CS.

* We use the term remainder 
section to refer to the part 
of the process code that is 
not entry code, critical 
section, or exit code.

* THIS IS VERY IMPORTANT: 
Normally, we require that a 
solution to a critical 
section problem satisfy the 
following three requirements 

(In the following, assume that 
{P0, P1, ..., Pn-1} is a set 
of processes, and that each 
has a critical section that 
accesses some resource that 
they all share.

1. Mutual Exclusion: If one of 
the processes in the set, Pi, 
is executing in its CS, then 
none of the other processes 
in the set is executing in 
its CS.

2. Progress: If none of the 
processes is executing in 
its CS and some processes 
wish to enter their CSs, 
then only those processes 
that are executing in entry 
code or exit code can 
participate in deciding 
which process will enter its 
CS next, and that selection 
will not be postponed 
indefinitely.

3. Bounded Waiting: There must 
exist an a priori bound (a 
limit) on the number of 
times that other processes 
are allowed to enter their 

CSs after a process has made 
a request to enter its CS 
and before that request is 
granted.

* We assume that each process 
is able to execute its 
instructions at some minimal 
rate, but there's no limit 
to how different the 
relative speed of processes 
could be.

* Often an OS kernel consists 
of multiple processes, which 
are subject to critical 
section problems (race 
conditions).

* Examples of shared kernel 
resources prone to race 
conditions
+ open file lists
+ memory allocation data
+ process lists
+ interrupt handling data

* On a uniprocessor, the OS 
can mask interrupts and 
refuse to relinquish the CPU 
until it has finished 
executing a critical 
section.  This insures 
mutual exclusion. The is the 
idea of a non-preemptive 
kernel.

* If multiple kernel threads 
are executing on a symmetric 
multiprocessor, then mutual 
exclusion cannot be assured 
merely by making the kernel 
non-preemptive.

* A preemptive kernel allows 
kernel processes/threads to 
be interrupted.  Preemptive 
kernels are usually more 
responsive, and better at 
supporting real time 
computing.
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SECTION 5.3 - Peterson's 
Solution

* The structure of Peterson's 
solution is:

shared int turn ;
shared boolean flag[2] ;
void Ptrsn (int me; int you)
do
{
  flag[me]= true ;
  turn = you ;
  while (    flag[you] 
          && turn you) 
     /* do nothing */ ;
  CS(me) ;
  flag[me] = false ;
  RS(me) ;
} while(true);

* Peterson's solution solves 
the critical section problem 
for the case of two 
processes, assuming that the 
hardware implements int and 
boolean loads and stores 
atomically.

* What does atomically mean in 
the last sentence? It means 
that if two or more 
processes attempt to execute 
a load or store concurrently 
on an int or boolean, the 
hardware of the computer 
resolves the race condition 
- it picks an order for the 
operations to be performed, 
and performs them one at a 
time, each one in its 
entirety before the next is 
allowed to begin.

* Process 0 executes 
Ptrsn(0,1) and Process 1 
executes Ptrsn(1,0).  

* CS() and RS() are assumed to 
be functions that execute 

the critical sections and 
remainder sections of the 
processes, according to the 
values of the parameter 
given.

* Under the assumptions given, 
Peterson's solution 
satisfies all three of these 
requirements: mutual 
exclusion, progress, and 
bounded waiting.

SECTION 5.4 - Synchronization 
Hardware

* Modern operating systems 
often rely on special atomic 
hardware instructions to 
provide the support needed 
to implement solutions to 
critical section problems.

* Examples: 1) atomic test-
and-set instruction, 2) 
atomic swap instruction, and 
3) atomic compare-and-swap 
instruction

* Description of what a test-
and-set instruction does:

bool test-and-set(bool *targ)
{
  bool rv = *targ ;
  *targ = true ;
  return rv;
}

* An atomic test-and-set must 
be implemented atomically in 
the hardware (the 
instruction set).  

* When any two processes 
attempt to execute test-and-
set on a parameter, the 
hardware serializes the 
operations - one process 
executes the operation 
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entirely, and then the other 
executes it entirely after 
the first has finished. 

* How to provide mutual 
exclusion with test-and-set:

shared bool L=false ;
void beExclusive(int me) 
{
  do
  {
    while (test-and-set(&L))
       /* do nothing */ ;
    CS(me) ;
    L=false ;
    RS(me) ;
  } while (true) ;
}
* Process #i executes 

beExclusive(i).  Two or more 
processes can implement 
mutual exclusion this way.

* beExclusive does not provide 
progress or bounded waiting.  
However we can obtain them 
by augmenting beExclusive 
like this:

*

shared int n ;
shared bool waiting[n] ;
shared bool L=false ;

 /* Initialize all waiting[i]  
    to false */
void beCS-solution(int me) 
{
    /*local var, not shared*/
  int you; 
  do
  {
    waiting[me]=true;
    while(waiting[me] 
          && test-and-set(&L))
      /* do nothing */ ;
    waiting[me]=false;
    
    CS(me);
    
    you = (me+1)%n;
    while((you != me)
            &&(!waiting[you]))
      you=(you+1)%n;
    if (you==me) L=false ;
    else waiting[you]=false;

    RS(me) ;

  } while (true) ;
}
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SECTION 5.5 - Mutex Locks

* Code like the while-loop in 
beExclusive can be used as 
an acquire-lock() function 
to gain a lock, and 
something like the line 
L=false can be used to 
implement a release-lock() 
function.

* This is the idea of a mutex 
lock variable, or spin-lock.

* This kind of mutex uses 
busy-waiting, which can be a 
disadvantage.  The code 
continually executes 
instructions in the CPU 
while waiting to acquire the 
lock.  If the wait is long, 
then much CPU time may be 
wasted.

* If a process suspends itself 
while waiting to acquire a 
lock, then the CPU can be 
utilized for productive 
work. In particular, this 
may give the process holding 
the lock the opportunity to 
finish using it and release 
it sooner.

* One possible advantage of a 
spin-lock is that if the 
wait is short, then it does 
not require the delay of 
suspending and resuming the 
waiting process.

* It can be a good strategy to 
busy-wait for a lock on one 
CPU if the process holding 
the lock is executing on 
another CPU.

SECTION 5.6 - Semaphores

5.6.1 & 5.6.2 Semaphore Usage 
and Implementation

* The idea of a binary 
semaphore is roughly 
equivalent to a mutex 
variable.

* Counting semaphores are 
quite a bit different.

* For one thing, counting 
semaphores are designed to 
suspend waiting processes 
instead of using busy 
waiting.

* A counting semaphore has 
this kind of structure

typedef struct
{
  int value ;
  struct process *list ;
} semaphore;

* In other words, a semaphore 
is a kind of data object 
with two fields, an int 
value and a list of 
processes.

* The wait operation, which 
must be implemented 
atomically, does this:

wait(semaphore *S)
{
  S->value--;
  if(S->value<0)
  {
     put self in S->list;
     block();
  }
}
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* The signal operation, which 
also must be implemented 
atomically, does this:

signal(semaphore *S)
{
  S->value++;
  if(S->value<=0)
  {
     remove P from S->list;
     wakeup(P);
  }
}

* block() suspends the process 
that invokes it, and 
wakeup(P) resumes the 
blocked process P.  

* block() and wakeup() would 
normally be system calls.

* To help programmers assure 
progress and bounded 
waiting, the list of 
processes may be implemented 
as a FIFO queue.  The 
semaphore data type we use 
in class projects is a 
counting semaphore with a 
FIFO queue for its list.

* Programmers use semaphores 
to solve critical section 
and other process 
synchronization problems. 

* The solution of a critical 
section problem goes like 
this

    shared semaphore S ;

    wait(S);
    CS(me);
    signal(S);

* The problem of implementing 
semaphores atomically is 
itself a critical section 

problem.  On a uniprocessor, 
one can make wait() and 
signal() system calls, and 
assure their atomicity by 
inhibiting interrupts. One 
can also use the technique 
illustrated by the code 
samples in section 5.4.  
This latter method is 
workable on a 
multiprocessor, as well as a 
uniprocessor.

* If the techniques of section 
5.4 are employed, there will 
be some busy waiting, but 
this will happen only while 
one process waits for 
another process to complete 
a very short section of code 
(the amount of code in a 
wait or signal operation).

5.6.3 - Deadlock and 
Starvation

* Below we describe a deadlock 
scenario - a situation in 
which each process P in a 
group is waiting for one of 
the other processes to do 
something before P will do 
anything. Because every 
process in the group is 
waiting, none of them make 
any progress.
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shared semaphores S,Q ;
  /* S & Q are counting 

semaphores with values 
initialized to 1. */

Code for P0:
wait(S);
wait(Q);

.. other code ...

signal(S);
signal(Q);

Code for P1:
wait(Q);
wait(S);

.. other code ...

signal(Q);
signal(S);

* Suppose that the execution 
of P0 and P1 is interleaved 
in the following way:

1) P0 executes wait(S)
2) P1 executes wait(Q)
3) P0 executes wait(Q)
4) P1 executes wait(S)

* In steps 3 and 4  P0 and P1 
block on semaphores Q and S.  
Now both are suspended, each 
waiting for the other to 
signal on Q or S so that a 
call to wakeup() will allow 
them to proceed.  They are 
destined to wait forever - 
nothing in the code provides 
a means to end their 
waiting.

* Deadlock causes infinite 
postponement - postponement 
that lasts forever.

* Another form of postponement 
- which is different - is 
called indefinite 
postponement.  Indefinite 
postponement is also called 
starvation.

* Indefinite postponement is 
postponement for which there 
is no known upper bound to 
its length. It is like being 
imprisoned with an 
indeterminate sentence - 
your captors may or may not 
release you eventually, but 
they can keep you waiting as 
long as they want.

* On the other hand, infinite 
postponement is like a life 
sentence without possibility 
of parole.  You know you are 
never going to be released.

5.6.4 - Priority Inversion

* The text describes a 
situation where three 
processes have three 
priorities L < M < H. PH, 
with priority H, needs 
resource R, which is held by 
process PL, running at 
priority L.  Process PM, 
running at priority M, gains 
the use of the CPU because 
it has higher priority than 
PL, and because PH is waiting 
for PL to release R.  Now PM 
can take a long time to 
execute, thus preventing PL 
from running to the point 
where it can release R.  In 
effect PH is being stalled by 
PM, which has a lower 
priority than PH.  This is an 
example of priority 
inversion.
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* One way to prevent priority 
inversion is to enforce 
priority-inheritance.  In 
the example above, PL would 
inherit the priority of PH  
until PL releases R, which 
would prevent the scheduler 
from giving preference to PM 
over PL.

* There's an inset in the text 
that explains how a case of 
priority inversion 
threatened the success of 
the Mars Pathfinder mission.

SECTION 5.7 - Classic Problems 
of Synchronization

* These are problems commonly 
used to test proposed 
process synchronization 
tools.

5.7.1 - The Bounded Buffer 
Problem

We can solve the bounded 
buffer problem by 
encapsulating the 
functionality of the counter 
in semaphores, as illustrated 
by the following code.

---------------------
#define BUFFER_SIZE 10
typedef struct 
{ 
   /* here declare desired fields
      for the buffer item type */
} item ;
shared array int 
buffer[BUFFER_SIZE];
 /*next position to add an item*/
shared int 
in=0,
/* next position to remove an item */
out=0;
/* full.value == # full buffers */                  
shared semaphore 
full(0),  
/* empty.value == # empty buffers */
empty(BUFFER_SIZE) ;      
---------------------
Producer's Code
do
{
   item nextp;
     /* produce an item in nextp */
   wait (empty) ;
   buffer[in]= nextp ;
   in =(in+1)%BUFFER_SIZE;
   signal(full) ;
} while (TRUE) ;
---------------------
Consumer's Code
do
{
   item nextc;
   wait (full) ;
   nextc = buffer[out] ;
   out=(out+1)%BUFFER_SIZE;
   signal(empty) ;
   /* consume nextc */
} while (TRUE) ;
---------------------  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* This code uses the values in 
the semaphores to keep track 
of how many full and empty 
buffer slots exist.  Also it 
delays the processes when 
necessary by blocking them.

5.7.2 - The Readers-Writers 
Problem

* The setup: a database is 
shared by a group of 
processes.  Some are read 
only (readers).  Some 
processes may write 
(writers).  We have to 
maintain exclusive access 
for writers, but readers are 
allowed to access the 
database concurrently. 

* The following pseudo-code 
describes a solution to the 
first readers-writers 
problem, which requires that 
no reader be kept waiting 
unless a writer has already 
obtained permission to 
access the database.

shared semaphore 
  rw_mutex=1, mutex=1;
shared int read_count=0;

Writer's Code:
do
{
  wait(rw_mutex);
    ... write to database ...
  signal(rw_mutex);
}while(true);

Reader's Code:
do
{
  wait(mutex);
  read_count++;
  if(read_count==1)
    wait(rw_mutex) ;
  signal(mutex);
    ... read from database ...
  wait(mutex);
  read_count--;
  if(read_count==0)
    signal(rw_mutex);
  signal(mutex);
}while(true);

* Basically, the code causes 
waiting writers to block on 
rw_mutex.  A reader seeking 
access waits on rw_mutex 
only if no readers are 
currently reading or 
waiting.  If more than one 
reader is waiting, one is 
blocked on rw_mutex, and the 
rest are blocked on mutex. 
Once there are readers 
accessing the data, any 
additional readers 
attempting access will be 
admitted immediately.  

* This 'solution' allows 
writers to starve, even if 
the list in rw_mutex is 
implemented as a queue.

* Many OSs make read/write 
locks available.  Such locks 
can be acquired either in 
read or write mode, and 
concurrent reading is 
supported.
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5.7.3 - The Dining 
Philosophers Problem

* The problem can be stated in 
various ways.  In one 
version, there are five 
'philosopher' processes {P0, 
P1, P2, P3, P4} and five disk 
drives, logically arranged 
in a circle, with a disk 
drive between each 
successive pair of 
processes.  Every now and 
then, a process may need to 
copy data between the disk 
on its left and the disk on 
its right. The process needs 
to have exclusive access to 
the disks while doing the 
copy operation.  

* An algorithm solving the 
problem must allow all the 
processes to operate without 
any of their copy operations 
experiencing indefinite (or 
infinite) postponement.

* One might naturally attempt 
to solve the problem like 
this:

shared semaphore drive[5];
   /* init values of all the
       drive[j] to 0 */

Code for Pi:
do
{
  wait(drive[i]);
  wait(drive[(i+1)%5]);
    ... do copy operation ...
  signal(drive[i]);
  signal(drive[(i+1)%5])
    ... do remainder section ...
}

* That code doesn't quite 
work.  The problem is that 
deadlock is possible if all 
processes wait for their 
first semaphore at about the 
same time.

* There are many ways to solve 
the problem.  One way is 
similar to the previous 
idea, except that each 
process is required to wait 
in for its semaphores in 
increasing numerical order.

SECTION 5.8 - Monitors

* Even with powerful tools 
like semaphores, process 
synchronization problems may 
be difficult to solve, and 
programmers may make 
mistakes even implementing 
well-understood solutions.

* For example, a programmer 
could place a call to 
signal() in a program that 
should be a call to wait().

* Such easily made coding 
errors can cause the 
software to operate very 
incorrectly, which can have 
very serious consequences.  
However such an error may go 
undetected until the timing 
of processes triggers a 
problem.  

* For example, a computer 
program controlling the 
traffic lights in an 
intersection might have a 
bug that eventually causes a 
deadly collision between two 
cars, but it might take a 
long time before two cars 
enter the intersection at 
just the right times and 
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speeds to make the collision 
happen.

* Compilers can be created to 
perform some of the error-
prone duties of programmers.

5.8.1 - Monitor Usage

* A monitor is an abstract 
data type.  The programmer 
declares a monitor, which 
incorporates data and 
operations on the data.

* The compiler generates the 
code so that entrance into 
the monitor is atomic - no 
two processes can access 
data or execute functions 
within the monitor 
concurrently.  

* The compiler may use such 
primitives as semaphores to 
implement a monitor.

* Thus the compiler takes over 
work that would otherwise be 
the responsibility of the 
programmer.

* Variables called conditions 
that are somewhat like 
binary semaphores are 
typically made available as 
part of monitors. 

5.8.2 - Dining-Philosophers 
'Solution' Using Monitors

* The authors present some 
code that uses a monitor to 
implement the dining 
philosophers 'situation'.  
The code presented is 
deadlock free, but it allows 
starvation - one or more 
philosophers could be 
delayed indefinitely from 
'eating'.  

* The idea of the solution is 
for a philosopher to wait 
until both chopsticks/disks 
are available and to acquire 
them both at the same time 
(atomically).

5.8.3 - Implementing a Monitor 
Using Semaphores

* Skip

5.8.4 - Resuming Processes 
Within a Monitor

* Skip

* Although the use of monitors 
can be helpful, errors in 
the code can still easily 
occur.

SECTION 5.9 - Synchronization 
Examples

5.9.1 - Synchronization in 
Windows

* Windows has a rich set of 
synchronization techniques 
and primitives, including 
the masking of interrupts, 
spin-locks, dispatcher 
objects, mutex locks, 
semaphores, events, timers, 
and critical section 
objects.

5.9.2 - Synchronization in 
Linux

* Linux has atomic integers, 
mutex locks, spin-locks, and 
semaphores.  The latter two 
are available in plain and 
reader/writer lock versions.
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* Linux also has the ability 
to enable/disable kernel 
preemption.

5.9.3 - Synchronization in 
Solaris

* Solaris has adaptive mutex 
locks, condition variables, 
semaphores, reader/writer 
locks, and turnstiles.

* A turnstile is a queue 
containing threads blocked 
on a lock.

5.9.4 - Pthreads 
Synchronization

* A Pthreads API provides 
mutex locks, condition 
variables, and reader/writer 
locks.

* Semaphores are not part of 
the Pthreads standard, 
although semaphores may be 
provided in systems that 
implement Pthreads.

* There are POSIX 
specifications for named and 
unnamed semaphores.

* (The semaphores we use in CS 
3750 are a data type 
customized for use by the 
class, and are not part of 
the POSIX standard.)

SECTION 5.10 - Alternative 
Approaches

5.10.1 - Transactional Memory

* APIs support marking 
sections of code as 
requiring atomic execution.

* It is the responsibility of 
the compiler to generate 

code that treats this as a 
memory transaction that is 
either completed and 
committed or aborted and 
rolled back.

* Transactional memory may be 
implemented in software or 
hardware.

5.10.2 - OpenMP

* A programmer can mark an 
area of the program as a 
critical section and the 
compiler will generate code 
to enforce mutual exclusion.

5.10.3 - Functional 
Programming Languages

* Since functional programming 
languages are not focused on 
putting state variables 
through a series of changes, 
they can be useful for 
working around problems 
involving race conditions 
and deadlocks.  

* Scala and Erlang are 
examples of languages used 
to write applications for 
parallel systems.
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