
Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

PROCESS SYNCHRONIZATION

OBJECTIVES
* introduce the critical

section problem, whose
solutions can be used to
ensure the consistency of
shared data

* present software and
hardware solutions to the
critical section problem

* examine classical process
synchronization problems

* explore tools used to solve
process synchronization
problems

SECTION 5.1 - Background

* A process may be interrupted
at any time. Some other
process could execute
arbitrary instructions next,
before the first process is
able to resume.

* This random interleaving of
the actions of two processes
can lead to incorrect usage
of shared memory or
resources.

* As an example, our text
shows how the value of an
integer variable can be
corrupted if one process
tries to increment it as
another process tries to
decrement it concurrently
(or in parallel).

* This kind of situation is
known as a race condition.

* The points made above
illustrate the need for the
OS to support process
synchronization and
coordination.

SECTION 5.2 - The Critical
Section Problem

* We may need to designate
critical sections in the
code of groups of processes,
where they access shared
resources. We require that
no two of them execute in
their critical sections
concurrently.

* How do we enforce this
requirement? That is the
critical section problem.

* Most solutions involve
creating a protocol in which
a process must get
permission for exclusive
access before entering a
critical section, and must
release its rights to the
critical section after
leaving it.

* One simple way to do this is
to create a gatekeeper
process that takes requests
from the other processes,
and tells them when they can
take a turn executing their
critical sections. There
are situations when going
through such a gatekeeper
can be a bottleneck to
performance.

* In this chapter we explore
distributed solutions to the
critical section problem, in
which the processes behave
symmetrically and cooperate
as peers to synchronize.

* Typically we insert a
section of entry code prior
to each critical section
(CS). A process executes
entry code to gain
permission to enter the CS.

� of �1 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

Similarly, we insert a
section of exit code after
each CS, which processes use
to release their rights to
executed in the CS.

* We use the term remainder
section to refer to the part
of the process code that is
not entry code, critical
section, or exit code.

* THIS IS VERY IMPORTANT:
Normally, we require that a
solution to a critical
section problem satisfy the
following three requirements

(In the following, assume that
{P0, P1, ..., Pn-1} is a set
of processes, and that each
has a critical section that
accesses some resource that
they all share.

1. Mutual Exclusion: If one of
the processes in the set, Pi,
is executing in its CS, then
none of the other processes
in the set is executing in
its CS.

2. Progress: If none of the
processes is executing in
its CS and some processes
wish to enter their CSs,
then only those processes
that are executing in entry
code or exit code can
participate in deciding
which process will enter its
CS next, and that selection
will not be postponed
indefinitely.

3. Bounded Waiting: There must
exist an a priori bound (a
limit) on the number of
times that other processes
are allowed to enter their

CSs after a process has made
a request to enter its CS
and before that request is
granted.

* We assume that each process
is able to execute its
instructions at some minimal
rate, but there's no limit
to how different the
relative speed of processes
could be.

* Often an OS kernel consists
of multiple processes, which
are subject to critical
section problems (race
conditions).

* Examples of shared kernel
resources prone to race
conditions
+ open file lists
+ memory allocation data
+ process lists
+ interrupt handling data

* On a uniprocessor, the OS
can mask interrupts and
refuse to relinquish the CPU
until it has finished
executing a critical
section. This insures
mutual exclusion. The is the
idea of a non-preemptive
kernel.

* If multiple kernel threads
are executing on a symmetric
multiprocessor, then mutual
exclusion cannot be assured
merely by making the kernel
non-preemptive.

* A preemptive kernel allows
kernel processes/threads to
be interrupted. Preemptive
kernels are usually more
responsive, and better at
supporting real time
computing.

� of �2 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

SECTION 5.3 - Peterson's
Solution

* The structure of Peterson's
solution is:

shared int turn ;
shared boolean flag[2] ;
void Ptrsn (int me; int you)
do
{
 flag[me]= true ;
 turn = you ;
 while (flag[you]
 && turn you)
 /* do nothing */ ;
 CS(me) ;
 flag[me] = false ;
 RS(me) ;
} while(true);

* Peterson's solution solves
the critical section problem
for the case of two
processes, assuming that the
hardware implements int and
boolean loads and stores
atomically.

* What does atomically mean in
the last sentence? It means
that if two or more
processes attempt to execute
a load or store concurrently
on an int or boolean, the
hardware of the computer
resolves the race condition
- it picks an order for the
operations to be performed,
and performs them one at a
time, each one in its
entirety before the next is
allowed to begin.

* Process 0 executes
Ptrsn(0,1) and Process 1
executes Ptrsn(1,0).

* CS() and RS() are assumed to
be functions that execute

the critical sections and
remainder sections of the
processes, according to the
values of the parameter
given.

* Under the assumptions given,
Peterson's solution
satisfies all three of these
requirements: mutual
exclusion, progress, and
bounded waiting.

SECTION 5.4 - Synchronization
Hardware

* Modern operating systems
often rely on special atomic
hardware instructions to
provide the support needed
to implement solutions to
critical section problems.

* Examples: 1) atomic test-
and-set instruction, 2)
atomic swap instruction, and
3) atomic compare-and-swap
instruction

* Description of what a test-
and-set instruction does:

bool test-and-set(bool *targ)
{
 bool rv = *targ ;
 *targ = true ;
 return rv;
}

* An atomic test-and-set must
be implemented atomically in
the hardware (the
instruction set).

* When any two processes
attempt to execute test-and-
set on a parameter, the
hardware serializes the
operations - one process
executes the operation

� of �3 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

entirely, and then the other
executes it entirely after
the first has finished.

* How to provide mutual
exclusion with test-and-set:

shared bool L=false ;
void beExclusive(int me)
{
 do
 {
 while (test-and-set(&L))
 /* do nothing */ ;
 CS(me) ;
 L=false ;
 RS(me) ;
 } while (true) ;
}
* Process #i executes

beExclusive(i). Two or more
processes can implement
mutual exclusion this way.

* beExclusive does not provide
progress or bounded waiting.
However we can obtain them
by augmenting beExclusive
like this:

*

shared int n ;
shared bool waiting[n] ;
shared bool L=false ;

 /* Initialize all waiting[i]
 to false */
void beCS-solution(int me)
{
 /*local var, not shared*/
 int you;
 do
 {
 waiting[me]=true;
 while(waiting[me]
 && test-and-set(&L))
 /* do nothing */ ;
 waiting[me]=false;

 CS(me);

 you = (me+1)%n;
 while((you != me)
 &&(!waiting[you]))
 you=(you+1)%n;
 if (you==me) L=false ;
 else waiting[you]=false;

 RS(me) ;

 } while (true) ;
}

� of �4 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

SECTION 5.5 - Mutex Locks

* Code like the while-loop in
beExclusive can be used as
an acquire-lock() function
to gain a lock, and
something like the line
L=false can be used to
implement a release-lock()
function.

* This is the idea of a mutex
lock variable, or spin-lock.

* This kind of mutex uses
busy-waiting, which can be a
disadvantage. The code
continually executes
instructions in the CPU
while waiting to acquire the
lock. If the wait is long,
then much CPU time may be
wasted.

* If a process suspends itself
while waiting to acquire a
lock, then the CPU can be
utilized for productive
work. In particular, this
may give the process holding
the lock the opportunity to
finish using it and release
it sooner.

* One possible advantage of a
spin-lock is that if the
wait is short, then it does
not require the delay of
suspending and resuming the
waiting process.

* It can be a good strategy to
busy-wait for a lock on one
CPU if the process holding
the lock is executing on
another CPU.

SECTION 5.6 - Semaphores

5.6.1 & 5.6.2 Semaphore Usage
and Implementation

* The idea of a binary
semaphore is roughly
equivalent to a mutex
variable.

* Counting semaphores are
quite a bit different.

* For one thing, counting
semaphores are designed to
suspend waiting processes
instead of using busy
waiting.

* A counting semaphore has
this kind of structure

typedef struct
{
 int value ;
 struct process *list ;
} semaphore;

* In other words, a semaphore
is a kind of data object
with two fields, an int
value and a list of
processes.

* The wait operation, which
must be implemented
atomically, does this:

wait(semaphore *S)
{
 S->value--;
 if(S->value<0)
 {
 put self in S->list;
 block();
 }
}

� of �5 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

* The signal operation, which
also must be implemented
atomically, does this:

signal(semaphore *S)
{
 S->value++;
 if(S->value<=0)
 {
 remove P from S->list;
 wakeup(P);
 }
}

* block() suspends the process
that invokes it, and
wakeup(P) resumes the
blocked process P.

* block() and wakeup() would
normally be system calls.

* To help programmers assure
progress and bounded
waiting, the list of
processes may be implemented
as a FIFO queue. The
semaphore data type we use
in class projects is a
counting semaphore with a
FIFO queue for its list.

* Programmers use semaphores
to solve critical section
and other process
synchronization problems.

* The solution of a critical
section problem goes like
this

 shared semaphore S ;

 wait(S);
 CS(me);
 signal(S);

* The problem of implementing
semaphores atomically is
itself a critical section

problem. On a uniprocessor,
one can make wait() and
signal() system calls, and
assure their atomicity by
inhibiting interrupts. One
can also use the technique
illustrated by the code
samples in section 5.4.
This latter method is
workable on a
multiprocessor, as well as a
uniprocessor.

* If the techniques of section
5.4 are employed, there will
be some busy waiting, but
this will happen only while
one process waits for
another process to complete
a very short section of code
(the amount of code in a
wait or signal operation).

5.6.3 - Deadlock and
Starvation

* Below we describe a deadlock
scenario - a situation in
which each process P in a
group is waiting for one of
the other processes to do
something before P will do
anything. Because every
process in the group is
waiting, none of them make
any progress.

� of �6 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

shared semaphores S,Q ;
 /* S & Q are counting

semaphores with values
initialized to 1. */

Code for P0:
wait(S);
wait(Q);

.. other code ...

signal(S);
signal(Q);

Code for P1:
wait(Q);
wait(S);

.. other code ...

signal(Q);
signal(S);

* Suppose that the execution
of P0 and P1 is interleaved
in the following way:

1) P0 executes wait(S)
2) P1 executes wait(Q)
3) P0 executes wait(Q)
4) P1 executes wait(S)

* In steps 3 and 4 P0 and P1
block on semaphores Q and S.
Now both are suspended, each
waiting for the other to
signal on Q or S so that a
call to wakeup() will allow
them to proceed. They are
destined to wait forever -
nothing in the code provides
a means to end their
waiting.

* Deadlock causes infinite
postponement - postponement
that lasts forever.

* Another form of postponement
- which is different - is
called indefinite
postponement. Indefinite
postponement is also called
starvation.

* Indefinite postponement is
postponement for which there
is no known upper bound to
its length. It is like being
imprisoned with an
indeterminate sentence -
your captors may or may not
release you eventually, but
they can keep you waiting as
long as they want.

* On the other hand, infinite
postponement is like a life
sentence without possibility
of parole. You know you are
never going to be released.

5.6.4 - Priority Inversion

* The text describes a
situation where three
processes have three
priorities L < M < H. PH,
with priority H, needs
resource R, which is held by
process PL, running at
priority L. Process PM,
running at priority M, gains
the use of the CPU because
it has higher priority than
PL, and because PH is waiting
for PL to release R. Now PM
can take a long time to
execute, thus preventing PL
from running to the point
where it can release R. In
effect PH is being stalled by
PM, which has a lower
priority than PH. This is an
example of priority
inversion.

� of �7 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

* One way to prevent priority
inversion is to enforce
priority-inheritance. In
the example above, PL would
inherit the priority of PH
until PL releases R, which
would prevent the scheduler
from giving preference to PM
over PL.

* There's an inset in the text
that explains how a case of
priority inversion
threatened the success of
the Mars Pathfinder mission.

SECTION 5.7 - Classic Problems
of Synchronization

* These are problems commonly
used to test proposed
process synchronization
tools.

5.7.1 - The Bounded Buffer
Problem

We can solve the bounded
buffer problem by
encapsulating the
functionality of the counter
in semaphores, as illustrated
by the following code.

#define BUFFER_SIZE 10
typedef struct
{
 /* here declare desired fields
 for the buffer item type */
} item ;
shared array int
buffer[BUFFER_SIZE];
 /*next position to add an item*/
shared int
in=0,
/* next position to remove an item */
out=0;
/* full.value == # full buffers */
shared semaphore
full(0),
/* empty.value == # empty buffers */
empty(BUFFER_SIZE) ;

Producer's Code
do
{
 item nextp;
 /* produce an item in nextp */
 wait (empty) ;
 buffer[in]= nextp ;
 in =(in+1)%BUFFER_SIZE;
 signal(full) ;
} while (TRUE) ;

Consumer's Code
do
{
 item nextc;
 wait (full) ;
 nextc = buffer[out] ;
 out=(out+1)%BUFFER_SIZE;
 signal(empty) ;
 /* consume nextc */
} while (TRUE) ;

� of �8 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

* This code uses the values in
the semaphores to keep track
of how many full and empty
buffer slots exist. Also it
delays the processes when
necessary by blocking them.

5.7.2 - The Readers-Writers
Problem

* The setup: a database is
shared by a group of
processes. Some are read
only (readers). Some
processes may write
(writers). We have to
maintain exclusive access
for writers, but readers are
allowed to access the
database concurrently.

* The following pseudo-code
describes a solution to the
first readers-writers
problem, which requires that
no reader be kept waiting
unless a writer has already
obtained permission to
access the database.

shared semaphore
 rw_mutex=1, mutex=1;
shared int read_count=0;

Writer's Code:
do
{
 wait(rw_mutex);
 ... write to database ...
 signal(rw_mutex);
}while(true);

Reader's Code:
do
{
 wait(mutex);
 read_count++;
 if(read_count==1)
 wait(rw_mutex) ;
 signal(mutex);
 ... read from database ...
 wait(mutex);
 read_count--;
 if(read_count==0)
 signal(rw_mutex);
 signal(mutex);
}while(true);

* Basically, the code causes
waiting writers to block on
rw_mutex. A reader seeking
access waits on rw_mutex
only if no readers are
currently reading or
waiting. If more than one
reader is waiting, one is
blocked on rw_mutex, and the
rest are blocked on mutex.
Once there are readers
accessing the data, any
additional readers
attempting access will be
admitted immediately.

* This 'solution' allows
writers to starve, even if
the list in rw_mutex is
implemented as a queue.

* Many OSs make read/write
locks available. Such locks
can be acquired either in
read or write mode, and
concurrent reading is
supported.

� of �9 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

5.7.3 - The Dining
Philosophers Problem

* The problem can be stated in
various ways. In one
version, there are five
'philosopher' processes {P0,
P1, P2, P3, P4} and five disk
drives, logically arranged
in a circle, with a disk
drive between each
successive pair of
processes. Every now and
then, a process may need to
copy data between the disk
on its left and the disk on
its right. The process needs
to have exclusive access to
the disks while doing the
copy operation.

* An algorithm solving the
problem must allow all the
processes to operate without
any of their copy operations
experiencing indefinite (or
infinite) postponement.

* One might naturally attempt
to solve the problem like
this:

shared semaphore drive[5];
 /* init values of all the
 drive[j] to 0 */

Code for Pi:
do
{
 wait(drive[i]);
 wait(drive[(i+1)%5]);
 ... do copy operation ...
 signal(drive[i]);
 signal(drive[(i+1)%5])
 ... do remainder section ...
}

* That code doesn't quite
work. The problem is that
deadlock is possible if all
processes wait for their
first semaphore at about the
same time.

* There are many ways to solve
the problem. One way is
similar to the previous
idea, except that each
process is required to wait
in for its semaphores in
increasing numerical order.

SECTION 5.8 - Monitors

* Even with powerful tools
like semaphores, process
synchronization problems may
be difficult to solve, and
programmers may make
mistakes even implementing
well-understood solutions.

* For example, a programmer
could place a call to
signal() in a program that
should be a call to wait().

* Such easily made coding
errors can cause the
software to operate very
incorrectly, which can have
very serious consequences.
However such an error may go
undetected until the timing
of processes triggers a
problem.

* For example, a computer
program controlling the
traffic lights in an
intersection might have a
bug that eventually causes a
deadly collision between two
cars, but it might take a
long time before two cars
enter the intersection at
just the right times and

� of �10 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

speeds to make the collision
happen.

* Compilers can be created to
perform some of the error-
prone duties of programmers.

5.8.1 - Monitor Usage

* A monitor is an abstract
data type. The programmer
declares a monitor, which
incorporates data and
operations on the data.

* The compiler generates the
code so that entrance into
the monitor is atomic - no
two processes can access
data or execute functions
within the monitor
concurrently.

* The compiler may use such
primitives as semaphores to
implement a monitor.

* Thus the compiler takes over
work that would otherwise be
the responsibility of the
programmer.

* Variables called conditions
that are somewhat like
binary semaphores are
typically made available as
part of monitors.

5.8.2 - Dining-Philosophers
'Solution' Using Monitors

* The authors present some
code that uses a monitor to
implement the dining
philosophers 'situation'.
The code presented is
deadlock free, but it allows
starvation - one or more
philosophers could be
delayed indefinitely from
'eating'.

* The idea of the solution is
for a philosopher to wait
until both chopsticks/disks
are available and to acquire
them both at the same time
(atomically).

5.8.3 - Implementing a Monitor
Using Semaphores

* Skip

5.8.4 - Resuming Processes
Within a Monitor

* Skip

* Although the use of monitors
can be helpful, errors in
the code can still easily
occur.

SECTION 5.9 - Synchronization
Examples

5.9.1 - Synchronization in
Windows

* Windows has a rich set of
synchronization techniques
and primitives, including
the masking of interrupts,
spin-locks, dispatcher
objects, mutex locks,
semaphores, events, timers,
and critical section
objects.

5.9.2 - Synchronization in
Linux

* Linux has atomic integers,
mutex locks, spin-locks, and
semaphores. The latter two
are available in plain and
reader/writer lock versions.

� of �11 12

Basic Set of Material to Cover in Lecture on Chapter Five of 9th
Edition of Silberschatz. Process Synchronization

* Linux also has the ability
to enable/disable kernel
preemption.

5.9.3 - Synchronization in
Solaris

* Solaris has adaptive mutex
locks, condition variables,
semaphores, reader/writer
locks, and turnstiles.

* A turnstile is a queue
containing threads blocked
on a lock.

5.9.4 - Pthreads
Synchronization

* A Pthreads API provides
mutex locks, condition
variables, and reader/writer
locks.

* Semaphores are not part of
the Pthreads standard,
although semaphores may be
provided in systems that
implement Pthreads.

* There are POSIX
specifications for named and
unnamed semaphores.

* (The semaphores we use in CS
3750 are a data type
customized for use by the
class, and are not part of
the POSIX standard.)

SECTION 5.10 - Alternative
Approaches

5.10.1 - Transactional Memory

* APIs support marking
sections of code as
requiring atomic execution.

* It is the responsibility of
the compiler to generate

code that treats this as a
memory transaction that is
either completed and
committed or aborted and
rolled back.

* Transactional memory may be
implemented in software or
hardware.

5.10.2 - OpenMP

* A programmer can mark an
area of the program as a
critical section and the
compiler will generate code
to enforce mutual exclusion.

5.10.3 - Functional
Programming Languages

* Since functional programming
languages are not focused on
putting state variables
through a series of changes,
they can be useful for
working around problems
involving race conditions
and deadlocks.

* Scala and Erlang are
examples of languages used
to write applications for
parallel systems.

� of �12 12

