
Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

THREADS

OBJECTIVES
* introduce the concept of a

thread
* describe APIs for Pthreads,

Windows, and Java thread
libraries

* discuss strategies that
provide implicit threading

* issues related to
multithreaded programming

* operating system support for
threading in Windows and
Linux

SECTION 4.1 - Overview

* Threads can share a lot of
context, but each thread
requires its own thread ID,
program counter, register
set, and stack. Threads can
share code, data, open
files, signals, and other OS
resources.

4.1.1 - Motivation

* Many popular user programs
are implemented as single
multithreaded processes.
Web browsers are examples of
applications that utilize
separate threads for such
tasks as screen display,
network communication, file
I/O, and so forth. On
multiprocessors,
multithreading increases
throughput.

* It is common for servers to
utilize multiple threads,
and to assign a separate

thread to handle each client
request.

* Operating Systems themselves
are often multithreaded.
Separate OS threads may
exist for such tasks as
device management, memory
management, and/or interrupt
handling.

4.1.2 - Benefits of
Multithreading

1. Responsiveness - even if
one thread is blocked or
busy with a time-consuming
task, another thread can
respond to the user

2. Resource Sharing - threads
within the same process
share code and data by
default - unlike separate
processes.

3. Economy - Because the
threads of a process share
so much context, it is more
efficient to create new
threads within a process
than to create new processes
- there's just less to
create. Context switching
between threads of the same
process is more efficient
than context switching
between processes - again
because there's less context
that needs to be switched.

4. Scalability - multiple
threads within a process can
exploit multiple CPUs within
a multiprocessor.

� of �1 6

Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

SECTION 4.2 - Multicore
Programming

* A system is parallel if it
can perform more than one
instruction simultaneously.

* A concurrent system may not
be truly parallel. A
concurrent system can
provide the illusion of
parallelism by time-sharing.

* Nowadays a single chip can
have multiple CPUs (cores).

4.2.1 - Programming Challenges

* It is a challenge to design
programs to exploit
multicore capability:

1. Identifying tasks that can
run concurrently

2. Figuring out how much CPU
time to give to each task

3. Figuring out how to divide
up data for the use of
various threads

4. Synchronizing operations so
that data dependencies are
observed.

5. Verifying the correctness
of parallel programs (having
multiple possible
interleaving execution
paths).

* Many computer scientists
feel that new approaches are
needed in designing
software, and increased
emphasis on parallel
processing.

4.2.2 - Types of Parallelism

* Data Parallelism

+ One example would be
dividing an array into two
halves and assigning
separate threads to
compute the sum of each
half - simultaneously on
different CPUs.

* Task Parallelism

+ An example of this would be
one thread computing the
minimum value of an array
while another thread
computes the average of
the same array.

* Usually parallelism is a
hybrid of the two basic
types.

SECTION 4.3 - Multithreading
Models

* There are kernel level
threads and user level
threads.

* User threads are supported
above the kernel -
implemented by code
libraries.

* Kernel threads are supported
directly by the operating
system.

* Of course, at some level,
kernel threads have to
support user level threads.

� of �2 6

Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

4.3.1 - Many-to-One Model

* In this model, one kernel
level thread supports a
group of user-level threads.

* This model is pretty simple
to implement but it does not
allow parallelism, so it is
not popular now.

* If one user-level thread
makes a blocking system
call, then the OS has to
suspend the supporting
kernel thread, which
prevents the other user-
level threads from
executing.

4.3.2 - One-To-One Model

* In this model, each user-
level thread has a
supporting kernel thread
that it does not have to
share with any other user-
level thread.

* This allows parallelism and
each user thread can block
independently.

* However user thread creation
goes rather slowly because
it always requires the
creation of a new kernel
thread.

* Also, having large number of
kernel threads can be a
drain on system resources.

4.3.3 - Many-To-Many Model

* In this model, a group of
user threads is supported by
a group of kernel threads.
Generally the number of
kernel threads is is less
than the number of user-
level threads.

* The model allows user-level
threads to be created
without creating more kernel
level threads.

* The kernel threads can run
in parallel on a
multiprocessor.

* User level threads can
migrate between supporting
kernel threads, or be
"pegged" to one specific
kernel thread.

SECTION 4.4 - Thread Libraries

* Thread libraries may
implement user-level threads
or kernel level threads.

* The sharing of memory among
threads is implemented in
different ways, but often
global variables are shared
by all threads and local
variables are not shared.

* Parent threads may run
concurrently with child
threads, or wait for them to
exit.

* Parents running concurrently
with child threads may or
may not communicate and/or

� of �3 6

Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

share data with their
children.

4.4.1 - Pthreads

* Pthreads is a specification
for an API that can be
implemented in various ways
- for example, sometimes it
is implemented with user
threads, and sometimes with
kernel threads.

* Parent threads creating
child threads specify a
function in which the child
is to begin its execution.

* Parents and children share
global variables, but not
local variable.

4.4.2 - Windows Threads

4.4.3 - Java Threads

SECTION 4.5 - Implicit
Threading

* Compilers can help protect
program correctness when
multiple threads are
utilized.

4.5.1 - Thread Pools

* It takes time for a server
to create a thread to handle
a client request, and it's a
good idea to place a limit
on the number of threads
operating in a server.

* Instead a server can use a
thread pool - create a set

of threads to use and re-use
for handling clients.

* Clients have to wait if all
the threads in the pool are
busy with other clients.

* The Windows thread API
supports thread pools.

4.5.2 - OpenMP

* The programmer can identify
blocks of code as parallel
regions.

* The compiled code creates a
thread for each core to
execute the region in
parallel.

* Programmers can call for
parallelizing array
processing in loops.

* OpenMP can be used on
Windows, Linux, MacOS X, and
other systems.

4.5.3 - Grand Central Dispatch

* GCD runs under MacOS X and
iOS.

* It includes extensions to C,
an API, and a run-time
library.

* The programmer can identify
blocks of code to be
executed in parallel.

* The blocks can be assigned
relative scheduling
priorities.

� of �4 6

Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

4.5.4 - Other Approaches

* Intel's Threading Building
Blocks

* Several Microsoft procucts
* The java.util.concurrent

package

SECTION 4.6 - Threading Issues

4.6.1 - The fork() and exec()
System Calls

* If a single thread in a
program calls fork(), how
many of the threads in the
calling process should it
duplicate?

* Some version of unix have
variants of fork(), so that
the calling thread can
duplicate all threads of the
process, or just itself.

* Typically if one thread
calls exec to run a program,
the program will replace the
entire calling process -
including all its threads.

* Therefore, often a thread
will duplicate only itself
with fork() if it intends to
call exec next, but if not
it may call the version of
fork() that duplicates the
whole process.

4.6.2 - Signal Handling

* Signals are a form of
message passing that have
been used in unix-like
operating systems for a very
long time.

* Signals were originally
designed to be sent and
received by single-threaded
processes.

* For multithreaded processes,
questions come up about
which threads belonging to a
process should receive a
sent signal.

+ the thread to which it
applies?

+ all threads in the
process?

+ certain threads?
+ assign one thread to

receive all signals?

* It is clear that if a thread
'causes a problem' then
usually it is the thread
that should receive the
signal.

* Some signals, like
'terminate', should be sent
to all the threads in the
process.

* If a signal should be
handled only once, then it
makes sense to select one
thread that is not blocking
it to receive it.

* Using the Pthreads API, it
is possible to send a signal
to a specific thread.

* Windows has a facility
similar to signaling -
asynchronous procedure
calls. APCs were designed

� of �5 6

Basic Set of Material to Cover in Lecture on Chapter Four of 9th
Edition of Silberschatz. THREADS

to be sent and received by
individual threads.

4.6.3 - Thread Cancellation

* A Pthreads thread can
execute a function to cancel
(terminate) another thread.

* The Pthreads API provides
for allowing threads to
defer cancellation so that
they can release resources
first.

4.6.4 - Thread-Local Storage

* A thread may have need of
data that is not local to
any function, but which is
also not shared with other
threads. That's the idea of
thread-local storage.

4.6.5 - Scheduler Activations

* In the implementation of the
relationship between user
and kernel threads, the OS
may use an intermediate data
structure called a
lightweight process (LWP).

* The LWP appears as a virtual
processor to the user-thread
library - something onto
which user thread may be
scheduled for execution.

* Each LWP is attached to a
kernel thread

* Upcalls, which work somewhat
like signals from the kernel
to the user thread library,
help implement the switching

of user thread context when
a user thread makes a
blocking system call, and
with starting blocked user
threads up again.

* Upcalls execute on LWPs.

SECTION 4.7 - Operating System
Examples

4.7.1 - Windows Threads

* Windows applications can be
multithreaded.

* Windows uses the one-to-one
model.

* The text lists various
components of the Windows
thread context.

4.7.2 - Linux Threads

* Linux does not use the term
process or thread. The
Linux term is task.

* The clone() system call can
be used to copy a task, and
parameters control the
degree of sharing that the
child task has with the
parent.

* Thus the parent can create a
lightweight child task that
is basically the same as a
thread, but it also can
create a child that shares
no resources, which is
basically the same as
forking a traditional copy
of an entire process.

� of �6 6

