
Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

PROCESSES

* In a modern multiprogramming
or time-sharing computing
system, the process is the
unit of work

* Such systems usually have a
multiplicity of operating
system processes, and also
user processes.

OBJECTIVES
* introduce the concept of a

process
* describe process features
* describe interprocess

communication
* describe client-server

communication

SECTION 3.1 - Process Concept

* A very general concept of a
(sequential) process is that
it's a "CPU activity". The
term "job" is synonymous
with "process." "Job" is an
older term.

3.1.1 - The Process

* A process is "a program in
execution."

* A program has a great deal
of "context" - context is
the information needed to
maintain the process - in
other words all the
information required to
restart it if it is
suspended.

* Some elements of the context
are: the code (text), which
is the actual instructions
of the process residing in
main memory; the value of

the program counter; the
contents of the registers
used by the process; the
stack of the process and the
contents of the stack - such
as parameters, return
addresses, and local
variables; the data section
of the process, containing
global variables; and often
a the heap storage area of
the process.

* The program is not the same
as the process. The program
is a passive executable file
that resides on secondary
storage. An executable file
has a specific structure,
which has to be known to the
operating system.

* The process is an active
entity.

* More than one process can
execute the same program,
often concurrently, as when
several users are executing
the same e-mail program or
editor concurrently on a
system.

3.1.2 - Process State
* Process State is another

possible element of the
context of a process.

* The possible states of a
process are:
+ New (being created)
+ Running
+ Waiting
+ Ready (to run)
+ Terminated

* Only one process can be
running on a CPU at any
given instant in time,

� of �1 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

because a CPU only executes
one instruction at a time.

3.1.3 - Process Control Block

* An OS, like other software,
needs to use data structures
to represent important
entities. There has to be a
data structure that
represents each process. We
refer to that data structure
as a Process Control Block
(PCB). The PCB has to
somehow include all the
process context information.
Since there is a huge amount
and variety of context, the
PCB is an abstraction. In a
real system, there is always
a large number of data
structures with links and
references to one another
that together comprise the
abstraction of the PCB.

* Some of the things included
in the PCB are:
+ Process state
+ Program counter
+ CPU registers
+ CPU-scheduling information

(e.g. process priority,
pointers to scheduling
queues)

+ Memory-management
information (e.g. process
memory locations and
boundaries)

+ Accounting information
+ I/O status information

(e.g. devices used by the
process, a list of the
files the process has
open)

(To see how a PCB is
represented in Linux, see the
inset on page 110 of chapter 3
entitled "Process
Representation in Linux")

3.1.4 - Threads

* A process can contain more
than one execution sequence
- multiple "threads"

* sets of threads are
basically sets of processes
that share more context than
'traditional' processes.

SECTION 3.2 - Process
Scheduling

* CPU Scheduling is the
selection that the OS makes
of the next process to
execute in the CPU.

3.2.1 - Scheduling Queues

* Typically the OS maintains
the PCBs of the processes
that are ready to execute in
a linked list called the
"ready queue".

* However, the ready queue is
seldom a FIFO queue.

* The OS also typically
maintains such queues for
each I/O device, in which it
keeps the PCBs of processes
that are waiting for a
pending I/O operation on
that device.

* There are queues where
processes can wait for other
types of events. For

� of �2 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

example a parent process can
wait in an "event queue" for
a child process to
terminate.

* In a running computing
system, there is a lot of
migration of processes back
and forth from one type of
queue to another.

3.2.2 - Schedulers
* In a batch oriented system,

there can be a queue of
processes on secondary
storage waiting for a turn
to be brought into the
primary memory for execution
by a part of the OS called
the long-term scheduler.

* The short-term scheduler is
the CPU scheduler that
selects the next process to
run from the ready queue.
All the jobs in the ready
queue are ready to run - so
of course they are resident
in primary memory.

* It is called a context
switch when the process
running in the CPU is
changed. The short-term
scheduler has to execute
every time there is a
context switch.

* The time each process spends
in the CPU before a context
switch is called the burst
time of the process.

* The time it takes to perform
a context switch, including
the time it takes for the

short-term scheduler to
choose the next process to
execute, is overhead. That
context switch time has to
be as short as possible in
relation to the average
burst time, or else CPU
utilization will be low, as
well as many other measures
of system performance, such
as response time,
throughput, and turnaround
time.

* Performance of a long-term
scheduler is seldom
critical, since basically
all it has to do is put new
processes into primary
memory at the same rate that
processes are terminating
and vacating primary memory.

* Long-term schedulers should
produce a good "job mix" - a
set of processes in memory
that keep the CPU and I/O
channels as busy as
possible.

* Most PCs and time-sharing
systems don't have a long-
term scheduler. A medium-
term scheduler (swapper) is
utilized to prevent primary
memory from becoming
overloaded or to improve the
job mix, by migrating jobs
back and forth between
primary and secondary
memory.

* The "degree of
multiprogramming" is the
number of processes resident
in primary memory.

� of �3 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

3.2.3 - Context Switch

* If the architecture offers
multiple sets of registers,
they can be switched to
speed up context switch
time.

* Naturally context switch
time depends on how much
data has to be saved and
restored, and that varies
from OS to OS.

SECTION 3.3 - Operations on
Processes

3.3.1 - Process Creation

* Operating systems typically
provide every process with
the ability to create a
"child process" by making a
system call.

* Each process in the system
has a unique identification
number - its process id
(pid).

* In unix-like operating
systems, there is a process
called init with pid 1 that
is the ancestor of all user
processes. Init is not a
child process. It is
'handcrafted' by the OS as
it boots.

* Depending on the OS, child
processes may or may not be
limited in the amount of
resources they are able to
obtain. Such limits can be
useful in preventing

arbitrary processes from
overloading the system by
creating too many child
processes, or having too
many descendants.

* Parent processes need to be
able to pass information and
resources to their child
processes, so that the child
processes will know what
work the parent intends for
them to perform, and so they
will have the resources they
need to get the work done.
For example, the parent
might need to tell the child
which program to execute,
and give the child some open
files to read from and write
to.

* A parent process may choose
to execute concurrently with
one or more of its child
processes, or it may choose
to suspend itself (wait)
until its child process
terminates.

* A parent process waits for a
child by making a system
call.

* A child process may be a
clone of its parent, and
execute the same program, or
it may load and execute a
different program.

* In unix, a parent creates an
exact duplicate of itself
with a fork() system call.
If the child wants to load
and execute a different
program, it makes an exec()

� of �4 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

system call after it is
'spawned' by its parent.

* Although they are clones,
the parent can tell it is
the parent because the
fork() system call returns
the pid of the child to the
parent. It returns 0 to the
child.

* The programmer can write the
program (shared by both the
parent and the child) so
that an if-else statement is
executed right after the
call to fork(). That way
the process with the return
code of 0 can do something
different from the process
with the non-zero return
code.

* In unix, a child process
inherits rights like access
privileges and resources
like open files from its
parents.

* In Windows, a parent creates
a child process with the
CreateProcess() function.
When calling
CreateProcess(), the parent
is required to specify a
program for the child to
execute, and many other
parameters.

3.3.2 - Process Termination

* Processes typically execute
an exit() statement of some
kind as their last
instruction. The effect is
a system call that causes

the OS to deallocate all the
resources of the process.
Often exit() causes the
return of an integer 'exit
status' to a parent that has
called wait().

* A parent can call wait()
like this

pid = wait(&status)

where pid and status are
integer data types. Such a
call to wait() allows the
parent to collect the exit
status of the child in the
status parameter, and to
discern which child exited by
examining the returned value
of the child's process id
number.

* There are usually system
calls with which a parent or
other privileged process can
cause the termination of a
child process. For example,
traditional unix uses the
kill() system call to send
the SIGKILL signal to a
process, and Windows has a
TerminateProcess() system
call.

* A parent process might
terminate a child process
because it is operating
incorrectly, or for using
too many resources, or
because it is not needed any
more. Perhaps the parent is
exiting, and it is
appropriate to terminate
child processes that have
been working on the same

� of �5 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

task as the parent. Perhaps
the OS has a rule that does
not allow user processes to
exit while leaving
descendant processes active.

* The interaction between a
parent and child process is
an example of interprocess
communication. The nature
of the interaction is more
complicated than it may seem
to be at first. Suppose a
unix parent spawns a child
and waits for it, and
suppose the child executes
and then exits. Because the
parent and child are
separate processes that
execute concurrently for
some amount of time, the
child process MAY exit AFTER
the parent waits, or the
parent MAY wait AFTER the
child exits.

* Therefore the OS has to do
something to make sure that
it saves the exit status of
a child process until it can
be delivered to a parent who
has not yet waited for it.

* When a child process calls
exit(), the OS deallocates
most of the resources of the
child. However the OS does
NOT deallocate the entry of
the child process in the
system "process
table" (which contains the
exit status) until the
parent (or, in case the
parent itself has already
exited, init) makes the

corresponding call to
wait().

* In unix parlance, a zombie
is a process that has exited
before any process has
waited for it.

* A related term, orphan, is
used to denote a child
process whose parent never
waits for it. Unix assigns
the init process the task of
waiting for orphaned
processes.

SECTION 3.4 - Interprocess
Communication

It can be convenient to create
multiple processes to
cooperate on work to be done.

Cooperating processes can
* share information,
* speed up computations, and
* make programs more modular

* Cooperating processes have
to communicate, and, as
we've seen, the two
fundamental modes of
interprocess communication
are message passing and
shared memory.

* Message passing typically
requires the use of system
calls, which tends to make
it less efficient than
communication with shared
memory.

* However shared memory
communication on some
multicore systems appears to

� of �6 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

suffer from cache coherence
problems to an extent that
message passing is actually
more efficient on these
systems.

3.4.1 - Shared Memory Systems

* Solutions to "the bounded
buffer problem" illustrate
one simple way in which two
processes can communicate
using shared memory in order
to cooperate on the solution
to a problem.

* Section 3.4.1 describes the
interaction of two
processes, the producer and
the consumer. For example,
the one process in a
compiler could produce
assembly code that is
consumed by a separate
assembly process.

* In the example of the text
book, the producer and
consumer share a region in
the primary memory
containing an array of 10
slots. This array is called
the buffer. The shared
memory region also contains
a constant that indicates
the size of the buffer, as
well as two variables in and
out, that are used as
indices.

* The producer and consumer
execute code that
interoperates in a manner
that ensures (assuming
'atomic' reads/writes of
integers) that neither

process gets ahead of the
other - in other words, the
producer will not overwrite
data in the buffer before
the consumer has read it,
and the consumer will not
re-read any locations in the
buffer before the producer
has put new data into them.

3.4.2 - Message Passing
Systems

* In a message passing system,
"send" and "receive"
commands have to be made
available to communicating
processes, and communication
"links" of some kind have to
be implemented.

* 3.4.2.1 - Naming

+ With direct communication,
a send command has the
intended recipient as a
parameter, and the receive
command has the sender as
a parameter. For example,
send (P, M) would be a
command to send the
message M to process P.

+ With indirect
communication, processes
send to and receive from
mailboxes or ports.
Processes can use more
than one mailbox at
various times, so this
kind of scheme is
considered more flexible.
However, care must be
taken to insure that
messages are received by
the intended recipients.

� of �7 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

The OS has to support
creation and deletion of
mailboxes, as well as
operations that send to
and receive from
mailboxes.

* 3.4.2.2 - Synchronization

Send and receive operations
can be blocking (synchronous)
or non-blocking (asynchronous)

+ With a blocking send, the
sending process is blocked
(suspended) until the
message is received -
similar to how a process
is suspended while waiting
for I/O to complete.

+ With a non-blocking send,
the process sends the
message and continues
execution immediately.

+ With a blocking receive,
the process requests a
message and blocks until
the message is available.

+ With a non-blocking
receive, the process
returns from the receive
request immediately,
either with or without
having gotten a message.
A special NULL message
denotes that no message
was available.

+ We can create a solution
to the bounded buffer
problem by programming the
producer to use a blocking

send, and the consumer to
use a blocking receive.

* 3.4.2.3 - Buffering

+ Depending on
implementation, sent
messages may be queued to
wait for receivers. There
may or may not be a
declared bound on the
length of the queue.

SECTION 3.5 - Examples of IPC
Systems

3.5.1 - An Example: POSIX
Shared Memory

* Shared memory-mapped files
+ One process creates a

shared-memory object
+ Other processes that want

to use the object must
open it.

3.5.2 - An Example: Mach

* Mach uses messages for most
communication - even system
calls.

* Messages have a specific
format, including the names
of the sending and receiving
mailboxes.

* A process can make a
requests to receive a
message from any one of a
group of mailboxes.

* A source of overhead is
double copying of messages
from sender's memory to
system memory and then from
system memory to receiver's
memory. In some cases the
system can work around the

� of �8 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

problem by re-mapping parts
of memory.

3.5.3 - An Example: Windows

* The Windows kernel has a
message-passing facility
called advanced local
procedure call (ALPC)

* ALPC uses ports similar to
the Mach ports (mailboxes).

* Some shared memory
techniques are used to pass
larger messages.

SECTION 3.6 - Communication in
Client-Server Systems

* Sockets
* Remote Procedure Calls
* Pipes

3.6.1 - Sockets

* A socket is a type of data
structure used as an
endpoint of communication -
for example in computer
networks.

* However processes on the
same computer can also use
sockets to communicate.

* There are socket operations
that implement client-server
interactions.

* Each socket is assigned an
internet protocol (IP)
address and a port number.
The IP address specifies the
connection (of the computer)
to the network, and the port
number specifies the process
using the socket. No two
sockets have both the same
IP address and the same port
number.

* Processes can use sockets in
a connection oriented mode,
or in a connectionless mode.

* After initializing, socket
communication works pretty
much the same as file I/O.

3.6.2 - Remote Procedure Call

* RPC is a mechanism for
allowing a process on a
local host to make a
function call that is
executed on a remote host.

* The client on the local host
sends a message to an RPC
server on the remote
machine, which identifies
the function desired, and
furnishes any needed
parameters. The server
arranges for the function to
be called, and passes any
needed results back to the
client by sending a message.

* RPC is implemented to appear
to user programs to be no
different than an ordinary
function call. Stub code in
libraries takes care of
connecting to the remote
server and 'marshaling'
parameters, using external
data representation (XDR).
Similar stubs on the server
side respond to the RPC
request and invoke execution
of the function on the
server host.

3.6.3 - Pipes

* Think of pipes as conduits
for passing information.
For example one process can
put information into a pipe,

� of �9 10

Basic Set of Material to Cover in Lecture on Chapter Three of
9th Edition of Silberschatz.

and another process can
extract that information.
We can think of the
processes as being stationed
at the two 'ends' of the
pipe.

3.6.3.1 - Ordinary Pipes

* Ordinary pipes allow
information to flow in one
direction only. They
support the kind of
interaction required by a
pair of processes with
producer-consumer
relationship.

* In unix, pipes are
considered to be a special
kind of file, and the system
call interface is very
similar to the one for
files.

* Ordinary unix pipes can only
be shared by related
processes, such as a parent
and its child.

* Windows has anonymous pipes
that are about the same as
unix ordinary pipes.

3.6.3.2 - Named Pipes

* Named pipes exist in unix
and Windows systems.
Processes that are not
related are able to utilize
them, and they can support
bidirectional communication.

* A named pipe is also called
a FIFO in unix terminology.
Like ordinary pipes, FIFOs
are considered and treated
as special kinds of files.
A FIFO, unlike an ordinary
pipe, can exist after the

process that created it has
exited. A FIFO is visible
in the file system. Any
process with the required
permissions can read from it
or write to it.

* Unix FIFOs are sometimes
used to support logging. A
process can add a line to a
system log by writing to a
FIFO.

* Unix FIFOs can not be used
for communication between
processes on different
machines. Sockets are
required for that.

* Unix FIFOs support
bidirectional information
flow, but only one direction
at a time.

* Windows named pipes do
support simultaneous
bidirectional information
flow (this is called full
duplex communication).

* Processes on different
machines can communicate
using a Windows named pipe.

* Windows named pipes support
certain structured message
types, whereas unix FIFOs
just work on the level of
transmitting individual
bytes.

� of �10 10

