
Basic Set of Material to Cover
in Lecture on Chapter Two of
9th Edition of Silberschatz.

We can view the OS in terms of
* services it offers
* the interface to users it
presents
* its components and their
interconnections

SECTION 2.1 - Operating System
Services

Services that help
(individual) users

* User interface
 Possibilities are
 + command line
 + batch (command files)
 + GUI
* Program execution
 -> load, run, terminate
* I/O operation
* File-System manipulation
 + read/write files & dirs
 + create/delete/search
 + list file info
 + get/set permissions
* Process Communication
 + via shared memory
 + via message passing
* Error Detection
 + detection & (re)action

Services that ensure efficient
operation

* Resource Allocation
* Accounting
 + what and how much each
 user uses
 + maybe for billing
 + maybe for research

* Protection and security
 + ensure that processes do
 not harm each other
 + keep system safe from
 outsiders

The OS performs as an
intermediary between the user
of the computing system and
the hardware, functioning as a
virtual computer that makes
the use of the hardware more
convenient and/or efficient.

SECTION 2.2 - User and
Operating-System Interface

2.2.1 - Command Interpreters

Command interpreters are also
known as shells.

 + Cycle:
 - get instruction
 - interpret instruction
 - execute instruction

 + Commands can be Internal
 or External

2.2.2 - Graphical User
Interfaces

 + Desktop Metaphor
 - à la Xerox PARC, 1970s
 - later adopted by Apple,
 Windows, and others.
 + Mobile devices are more
 oriented toward touch
 screens and gestures

2.2.3 - Choice of Interface

 + Unix-like systems offer
 powerful command-line
 interfaces and scripting

� of �1 7

 capabilities.
 + Most Windows users stick
 with the GUI functions.
 + Macs offer both kinds
 of interfaces

Computer scientists view the
user interface software as a
user program - NOT part of the
operating system.

SECTION 2.3 - System Calls

System calls provide OS
services. They are operating
system 'routines' written
mostly in a high level
programming language such as C
or C++. Some low-level parts
of system call code that
access the hardware may have
to be written in assembly
language.

Most processes make 'heavy
use' of system calls
(thousands per second) for
such things as
 + keyboard & screen
 functions
 + file system operations
 + error processing
 + process execution &
 termination

Programmers typically do not
directly write code that makes
system calls. Instead they
use an API, which utilizes
system calls indirectly
through system libraries.
 + Code portability is
 enhanced through the use of
 APIs.
 + Also APIs make it simpler
 to use system calls that

 have complicated set of
 parameters.
 + The APIs implement
 information hiding that
 makes system programming
 easier.

Methods used by system calls
to pass parameters to the
operating system:
 + registers
 + a block or table in memory
 (location written in a
 register)
 + pushed onto the stack by
 the process that makes the
 system call

SECTION 2.4 - Types of System
Calls

Categories of System Calls:

2.4.1
+ Process Control
 - end, abort (may
 involve a memory dump
 to a file)
 - Control is usually
 returned to a calling
 (parent) process - e.g.
 a command processor.
 - A (error) code may be
 returned for the
 information of the
 calling process.
 - Create/Terminate process
 - Get/Set process
 attributes
 - wait for a certain time
 - wait for an event
 - signal an event
 - acquire lock on resource
 - release lock

� of �2 7

MS DOS is not a
multiprogramming OS, and it
does not utilize standalone
processes.

Classic unix utilizes the
fork() system call to
duplicate a process, and then
the exec() system call to
overlay the new process with a
new program.

2.4.2
+ File Manipulation
 - Create file or dir
 - Delete file or dir
 - open/read/write/reposition
 - close
 - get/set attributes
 - other ops like mv or cp

2.4.3
+ Device Manipulation
 - devices may be physical or
 virtual (abstract) e.g
 files.
 - request/release system
 calls may be used
 - read/write/reposition
 calls may be used
 - many systems treat files
 and devices similarly

2.4.4
+ Information Maintenance
 - get time, get date,
 list users, report on
 free space, dump memory,
 and so forth

2.4.5
+ Communication
 - message passing involves
 some kind of connection,
 and/or addressing
 technique

 - get_hostid, get_processid
 - open_connection
 - close_connection

 Typically daemons
 accept connections

 Typically client/server
 interaction is utilized in
 message passing.

 - read_message/write_message

 - shared memory model
 * one process creates
 shared memory region
 * a second process
 attaches the shared
 region
 * creation and attachment
 are system calls
 * afterwards processes
 read/write shared memory
 to communicate without
 further reliance on the
 OS required

The message passing model is
good for small amounts of data
and is easy to implement

The shared memory model has
greater potential efficiency
and convenience, but
protection and synchronization
are challenges.

2.4.6
+ Protection
 - get/set permissions
 - allow_user
 - deny_user

� of �3 7

SECTION 2.5 - System Programs

System programs are also
called system utilities. They
facilitate software
development and execution.

Some are only interfaces to a
system call, but others can be
complex.

System Program Categories are:

* File Management
 - create/delete/copy/rename
 /print/dump/list, and so
 on
* Status Information
 - date/time/disk space
 /current users/logging
 info/debugging info/
 'registry' of config info
* File Modification
 - text editors/file search
 or transform utilities
* Programming-language support
 - compilers/assemblers/
 debuggers/interpreters
* Program loading and
 execution
 - loaders/relocatable
 loaders/linkage editors/
 overly loaders/debugging
 systems
* Communications
 - mechanisms for making
 virtual connections
 among processes/users/
 computer systems: message
 passing/browsing/e-mail/
 remote login/file
 transfer

* Background services - some
 may be user level processes,
 others kernel processes
 - configuration scripts
 that run at boot time
 - long running daemons that
 provide services
 - daemons that serve
 incoming network
 connections
 - software that start up
 scheduled tasks
 - error monitors
 - printing servers

Application Programs may
include:
 - web browsers
 - word processors
 - text formatters
 - spreadsheet/database
 - and so on

Interfaces vary. Computer
scientists usually think of
the kernel of the OS as what
goes on beneath the system
call interface.

SECTION 2.6 - Operating System
Design and Implementation

2.6.1 - Design Goals
+ Design depends on type of
 hardware and type of system,
 e.g. time-sharing,
 embedded ..
+ There will be user goals
 and system goals
+ There's no agreement
 on how to form design
 goals.
+ Principles of SW engineering
 are utilized

2.6.2 - Mechanism and Policy

� of �4 7

+ Policy is WHAT it does
+ Mechanism is HOW it does it
+ Generally it's good to
 create mechanisms that can
 support a wide range of
 policies, so that it will
 not be hard to change
 policies

2.6.3 - Implementation
+ It's generally agreed that
 it is best to write as much
 of an OS in high level
 programming languages as
 possible (NOT assembly
 language)
+ However, some assembly
 language for things like
 device drivers and saving
 and restoring CPU registers
 will be required.
+ It may be necessary to write
 certain "bottleneck"
 portions of the system in
 assembly code.
+ Advantages of using high
 level language:
 * Easier to port
 * Faster to program
 * compact code
 * code easier to understand,
 debug, and modify
 * improvements in compilers,
 plus recompilation will
 improve OS code.

SECTION 2.7 - Operating-System
Structure

A big program like an
operating system should have a
modular construction

2.7.1 - Simple Structure
* MS-DOS and Unix really don't

have much modular structure.

* MS-DOS levels of
functionality are not well
separated.

* The original unix is
separated into system
programs and kernel, which
is further divided into some
interfaces and drivers.

* The original unix is layered
to some extent, but rather
"monolithic" too.

* Monolithic software is
difficult to implement and
maintain, but the absence of
interface and communication
overhead makes for
performance advantages.

2.7.2 - Layered Approach
* The layered approach is one

way to construct a modular
OS.
+ layer zero is the hardware

and the highest layer (N)
is the user interface.

+ Each layer is able to
utilize the functions of
lower layers, but not the
layers above.

+ The layers can be built
from the bottom up.

+ If 'done right' any errors
encountered must be in the
layer currently under
construction.

+ DISADVANTAGE: difficult to
design layers without
circular dependencies.

+ DISADVANTAGE: overhead
passing information from
layer to layer.

+ 'BACKLASH': newer designs
with fewer layers.

� of �5 7

2.7.3 - Microkernels
* Carnegie Mellon University's

Mach OS is an example of
microkernel architecture

* One removes all non-
essential functions from the
kernel and implements as
user level software.

* Typically minimal process
and memory management will
reside in the microkernel.

* Importantly, the microkernel
must provide message passing
between user programs and
system services executing
outside the kernel.

* ADVANTAGE: ease of adding
new services (to user space)

* ADVANTAGE: a smaller kernel
that is easier to maintain,
modify, and port.

* DISADVANTAGE: performance
penalty due to message
passing through the
microkernel.

2.7.4 - Modules
* The idea of "loadable kernel

modules" is
+ The kernel has "core

components."
+ additional service modules

are linked in at boot time
or run time, as needed.

+ any module can call any
other module.

+ modules do not need to
communicate through the
core.

2.7.5 - Hybrid Systems
* Most actual operating

systems have designs that
draw from more than one of
these paradigms: simple

structure, layered approach,
microkernels, and modules.

* 2.7.5.1 - Mac OS X
incorporates aspects of
layering, microkernel, and
modules design.

* 2.7.5.2 - The iOS mobile
device OS resembles a
layered design in some
respects. It is closed-
source.

* 2.7.5.3 - Android is an
open-source OS for mobile
devices. It is a layered
stack of software with a
flavor of Linux at level 1.

SECTION 2.8 - Operating-System
Debugging

2.8.1 - Failure Analysis
* When a process has a

failure, the OS may write
information to log files or
dump the process context to
a file.

* If the kernel crashes, there
is usually a crash dump
written to disk.

* The dump can be turned into
a proper file as part of the
reboot sequence.

2.8.2 - Performance Tuning
* Trace listings are logs of

"interesting system events"
that designers use to
compile statistics that can
help them make design
improvements.

* There are also tools like
the unix "top" facility and
the Windows Task Manager

� of �6 7

that query the system about
its current operating
conditions to look for
problems such as performance
bottlenecks.

2.8.3 - DTrace
* DTrace adds software

'probes' to a running system
to get information about its
operation.

* Profiling periodically
samples the instruction
pointer to find out what
code is being executed.

* DTrace probes can be backed
out while not in use so that
system performance is no
longer affected by them in
any way.

* DTrace is part of open-
source OpenSolaris.

* It has been added to Mac OS
X, and FreeBSD.

SECTION 2.9 - Operating-System
Generation

* Typically a special program
is run as part of the OS
installation, to configure
aspects of the system for
its particular hardware and
intended functions.

* Disk partitioning is
commonly part of this
generation process, and many
other configurable
characteristics.

* Depending on details of how
it's done, configuration may
require recompilation of the
kernel, or not; selection of
modules to be loaded at boot
time, or not; and creating
(or not) files and tables

containing configuration
information to be looked up
from time to time by the
booting and/or running
operating system.

SECTION 2.10 - System Boot

* A simple bootstrap loader
executing in ROM at boot
time may fetch a more
complex boot program from
disk, which in turn loads
and executes the kernel.

* The booting system also
checks and initializes the
hardware.

� of �7 7

