
Basic Set of Material to Cover
in Lecture on Chapter One of
9th Edition of Silberschatz.

The OS performs as an
intermediary between the user
of the computing system and
the hardware, functioning as a
virtual computer that makes
the use of the hardware more
convenient and/or efficient.

The first chapter
* Describes how a computing
system is organized, and
* What the components are

It also explains about the
variety of different kinds of
computing systems
(environment) and gives some
examples.

SECTION 1.1 - What Operating
Systems Do
* operate the hardware
(minimizing misuse)
* coordinates use of the
hardware among all the
programs running on the system
* makes the hardware (much)
easier to use
* insures that the hardware is
utilized efficiently
* allocates resources (such as
CPU time and memory) to
running programs

Most or all programs running
on a computer need to be
provided with the services
listed above.

It does not make sense to
require every application

programmer to furnish code
that implements these common
services.

It's better to have a single
program, the OS, that provides
these common services to all
the other programs.

SECTION 1.2 - Computer System
Organization

1.2.1 - Computer System
Operation
Components
* CPU(s), primary memory, and
device controllers sharing a
bus
* CPUs and controllers can
execute in parallel
* CPUs and controllers compete
to use the primary memory
* The memory controller
arbitrates competition for use
of memory

Typically, computers boot
through automatic execution of
a program in ROM that knows
how to load the OS from
secondary memory and jump into
it. Details vary.

The primary purpose of CPUs is
to execute user program.
Therefore, whenever the
operating system is executing
on a CPU, its job is to finish
whatever it needs to do as
soon as possible, and then
VACATE the CPU by dispatching
a user process.

This means that the OS is NOT
EXECUTING much of the time.
(When people say that the OS

� of �1 8

is "always running" - that's
not literally true.) However,
the hardware and the user
processes need to have a way
to summon the operating system
when they need it to provide a
service. The purpose of
INTERRUPTS is to give the
hardware and the software a
way to summon the operating
system. The hardware is
designed and constructed in a
way that allows devices and
running programs to send an
interrupt to a CPU, which
causes the CPU to immediately
save some critical information
about the current process and
then begin executing a service
routine associated with the
interrupt. This service
routine is part of the
operating system. This is
very important. The operating
system is completely dependent
on interrupts. There is no
other way for the OS to begin
execution again after it has
given the CPU to a process.

1.2.2 - Storage Structure

1.2.3 - I/O Structure
Typically an operating system
contains a module called a
device driver for each type of
controller in the hardware
system. The peculiarities of
how to operate the device are
sequestered in the device
driver code, and the rest of
the operating system can use a
uniform interface to the
device, which is provided by
the device driver. Device
drivers are complimentary to

interrupts: device drivers
provide communication from the
the OS to the devices, while
interrupts provide a means of
communication from devices to
the operating system.

Sometimes the style of I/O
requires one interrupt for
each transfer of a byte. Some
devices function using direct
memory access (DMA) which
accomplishes the transfer of
large blocks of data between
primary memory and a device
with only one interrupt.

SECTION 1.3 - Computer System
Architecture

1.3.1 - Single-Processor
Systems
In such systems there is only
one general purpose CPU

1.3.2 - Multiprocessor Systems
These systems have multiple
CPUs
* typically they are 'tightly-
bound' CPUs that share a
common bus and primary memory,
as well as power supply and
peripherals.
* Most commonly they are
symmetric multiprocessing
systems, rather than boss/
worker designs. In an SMP all
processors can and do perform
all types of system work,
including execution of
operating system code.
* Multiprocessors can execute
more than one program
simultaneously.

� of �2 8

* It is a challenge for the OS
to keep all the processors
busy.

Multicore Systems - are
multiprocessor systems in
which multiple CPUs share the
same chip.

Blade systems are essentially
multiple independent computers
housed in the same chassis.
Each mainboard may contain
multiple cores and/or multiple
processors.

1.3.3 - Clustered Systems
- variant architecture
- special OS features may be
required

SECTION 1.4 - Operating System
Structure
+ The ability to multiprogram
is important to OS design.
 It necessitates
sophisticated OS software.
+ Remember that
multiprogramming is a concept
that is quite
 different from
multiprocessing.
+ However, the two have
something in common - both
lead to a
 situation in which the
computer exhibits concurrency.
+ This is especially true when
the multiprogramming style is
time-sharing
 (aka multitasking) wherein
the context switches occur
very frequently.
+ Time-sharing operating
systems have to be very
sophisticated too -

 in order to support
interaction of each user with
his or her jobs.
+ Examples of the demands on
the OS are for online file
systems,
 process scheduling, memory
management, swapping,
 and process synchronization.
These are major themes of
chapters
 of the textbook.

SECTION 1.5 - Operating System
Operation
1.5.1 - Dual Mode and
Multimode Operation

Dual mode operation is a
method for protecting the
computing system, by
insuring that user processes
are not able to execute
dangerous operations.

The basic idea is to have a
mode bit in the hardware.
The computer boots with the
mode bit cleared (0).
The OS sets the bit before
jumping into user code (1)
An interrupt clears the mode
bit (0).
In this manner, the mode bit
is assured to be 0 when the OS
is executing,
and 1 when a user process is
executing.
Privileged instructions are
implemented in the hardware -
instructions
that can be executed only in
kernel mode (0). An attempt
to execute a

� of �3 8

privileged instruction while
in user mode just causes a
trap to the
operating system.
Examples of Privileged
Instructions
* Switch to kernel mode
* I/O control
* timer management
* masking of interrupts

+ A SYSTEM CALL is a request
made by a process for a
service from the OS
+ Usually system calls are
implemented by execution of an
instruction that causes a trap
+ The service routine of the
OS that handles the interrupt
figures out
 what service is being
requested (often by checking
for parameters left
 by the calling process in
registers, memory, or on its
stack), and
 then calls the appropriate
routine to perform the
service.

1.5.2 - Timer
Many computer architectures
incorporate one or more timers
that can be set to interrupt
after a specified amount of
time. Such a timer can be
used by the operating system
to prevent a user process from
failing to relinquish the CPU.
The instructions that manage
the timer are privileged,
which prevents user processes
from disabling the timer.

SECTION 1.6 - Process
Management

Basically a process is a
program that is executing.
Many resources and data are
required to maintain a
process.
The OS:
* Allocates CPU time to
processes
* Creates and deletes
processes
* Suspends and resumes
processes
* Provides synchronization
mechanisms for processes
* Provides mechanisms for
processes to communicate with
each other

SECTION 1.7 - Memory
Management
In a typical multiprogramming
computing system, the OS has
to
* Allocate and deallocate
memory
* Keep track of which parts of
memory are free and allocated
* Keep track of which
processes are allocated which
portions of memory
* Deal with situations in
which the supply of free
memory is depleted

SECTION 1.8 - Storage
Management
* The OS is responsible for
implementing the structure of
a file system, usually with
secondary storage being the
main underlying physical
structure.

1.8.1 - File-System Management
* The OS implements the
abstract concept of a file

� of �4 8

* The OS implements file
directory structure
* The OS implements file
ownership and permissions
The OS is responsible for
+ file creation and deletion
+ directory creation and
deletion
+ primitives for file
manipulation
+ mapping files onto secondary
storage devices
+ backing up files

1.8.2 - Mass-Storage
Management
* The OS has to manage
 + Free space on disk
 + Disk storage allocation
and deallocation
 + The scheduling of
transfers of data between disk
and primary memory

Since the speed of secondary
storage is often a performance
bottleneck,
the efficiency of the
implementation of secondary
storage may be critical to
operating system design.

The OS often has
responsibility for tertiary
storage - operations such as
mounting and unmounting backup
tape drives, and performing
backup and restore functions.

1.8.3 - Caching
* Know what it is, the basics
of how it is implemented
* Know that cache size and
replacement policy are
important to hit ratio.

* Be aware of the problem of
keeping consistency among
copies of data kept in
different cache levels, or in
separate caches that are at
the same level.

1.8.4 - I/O Systems
The I/O subsystem provides
"information hiding" between
the I/O devices and higher
levels of the OS. The
components of the I/O system
are
* memory management such as
buffering, caching, and
spooling
* A general interface for the
OS to use to communicate with
device drivers.
* device drivers for specific
hardware devices

SECTION 1.9 - Protection and
Security

Things that come under this
heading
* authorization
* preventing access to some
resources
* preventing misuse of some
resources to which access IS
ALLOWED

* Protection is mainly about
ensuring access is authorized
(checking ID).

* Security is more about
monitoring usage to defend it
against misuse

SECTION 1.10 - Kernel Data
Structures

� of �5 8

1.10.1 Lists, Stacks, and
Queues
* Operating Systems are
fundamentally programs. They
are big sophisticated programs
that utilize a wide variety of
data structures
+ arrays
+ various kinds of lists, many
of which are linked structures
+ stacks
+ queues

1.10.2 Trees
Operating systems utilize a
wide variety of tree data
structures, like binary trees
and trees that have much
greater potential "fan out"

1.10.3 Hash Functions and Maps
+ For example the OS might
hash user names to lookup
passwords when interacting
with a user who is trying to
log in to the system

1.10.4 Bit Maps
A string of n bits can be used
to indicate the free/allocated
status of n items. A bit
value of 0 commonly means the
resource is free, and 1 means
it is allocated. Bit maps are
very compact, so they are used
for things like allocation of
disk blocks.

SECTION 1.11 - COMPUTING
ENVIRONMENTS

1.11.1 - Traditional Computing
This may consist of PCs
connected to a network,
servers, and remote access
with laptop computers. Some

systems are still using
terminals attached to main
frames

Now web portals are more
common, and "thin clients" -
machines that have just enough
power to utilize web-based
services. More connections
are using wireless and
cellular networks.

People now have faster
internet connections at home,
with firewalls, and often home
networks.

Batch and time-sharing systems
are increasingly rare. Time
sharing technology is still
prevalent, but mostly used to
support the multiple processes
all running for the benefit of
a single user.

1.11.2 - Mobile Computing
Use of mobile computing has
exploded - e-mail, messaging,
browsing, navigation and other
location-based services,
augmented reality that
sometimes involves overlaying
real scenes with information.
Hardware for mobile systems is
currently limited in speed and
capacity.

1.11.3 - Distributed Systems
+ Separate machines -
heterogeneous
+ Network operating system
generally means one that runs
separately on each host, but
which is "network aware"
+ A truly distributed
operating system makes the

� of �6 8

network of computers take on
the nature of a single
computer with a single
operating system.

1.11.4 - Client-Server
Computing
+ There are compute-server
systems
+ There are file-server
systems

1.11.5 - Peer-to-peer
Computing
+ The ability of a host to act
as a server or as a client is
exploited in peer-to-peer
systems.
+ There can be a multiplicity
of servers, which can reduce
server bottleneck problems.
+ However clients in peer-to-
peer networks often utilize a
centralized lookup service to
locate a server.
+ An alternative is for
clients to broadcast to all
hosts in the peer-to-peer
network to ask for a service.
+ Skype is also peer-to-peer
networking.

1.11.6 - Virtualization
* This is technology that
allows an operating system to
run as applications within
another operating system.
* Virtualization is
independent of emulation,
since both the virtualized and
native OSs may be designed to
execute on the same CPU -
whereas emulation denotes
interpretation of the
instructions of one CPU as a

set of instructions on a
different CPU.
 + Virtualization allows
users to install multiple OSs
on a single machine, and
thereby provide a convenient
means of running more
applications - since some
applications are not available
on some Operating System
platforms.
 + People who are trying to
port software can test
versions for different
operating systems on just one
machine that has all the
operating systems installed.

1.11.7 - Cloud Computing
+ Cloud computing is compute-
serving, file/storage serving,
and application-serving.
+ Users pay per month for what
they use.
+ Clouds can be public,
private, or a hybrid.
+ There is SaS -software as a
service, PaaS - platform as a
service (e.g. a database
server), IaaS - infrastructure
as a service (e.g. storage for
backups)

1.11.8 - Real Time Embedded
Systems
* These ubiquitous systems are
the computers in devices like
cars, microwave ovens, and so
on. They mainly monitor and
manage devices, seldom have
extensive user interfaces, and
are not used as general
purpose computers (although
the hardware may be identical
to the hardware used for some
general purpose computers).

� of �7 8

* Some embedded systems use
application specific
integrated circuits (ASICs)
that can provide desired
functionality without having
an operating system.
* The OS used in an embedded
system is often REAL TIME.

SECTION 1.12 - Open-Source
Operating Systems

* These are operating systems
for which one can get the
source code, not just the
compiled version of the
program.
* Often open source code is
easier to maintain, improve,
experiment on, learn from, and
so forth.

1.12.1 - History
Early in the history of CS,
programmers shared source code
commonly. Later it became
common to withhold it, and
sell only the object code.
Some of the reasons were to
protect profits, and keep
secrets needed for the
efficacy of media copy
protection.
* Richard Stallman's Free
Software Foundation encourages
the sharing of source code.

1.12.2 - Linux
+ Linus Torvalds put GNU Unix-
compatible tools together with
a Minix-inspired kernel and
then people worldwide refined
it into the Linux operating
system.
+ There are numerous
distributions of Linux

1.12.3 - BSD Unix
+ BSD Unix has an interesting
history.
+ Apple's Darwin kernel is
based on BSD Unix

1.12.4 - Solaris
+ Sun Microsystem Unix
+ First based on BSD, then
AT&T Unix
+ Sun sold out to Oracle
+ Development of Solaris
continues by third party
Illumos

1.12.5 - Open Source Systems
as Learning Tools

SECTION 1.13 - Summary

� of �8 8

