
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 5: CPU Scheduling

5.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 5: CPU Scheduling

Basic Concepts
Scheduling Criteria
Scheduling Algorithms
Thread Scheduling
Multiple-Processor Scheduling
Operating Systems Examples
Algorithm Evaluation

5.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

To introduce CPU scheduling, which is the basis for multiprogrammed
operating systems
To describe various CPU-scheduling algorithms
To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a
particular system

5.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Basic Concepts

Maximum CPU utilization obtained with multiprogramming
CPU–I/O Burst Cycle – Process execution consists of a cycle of
CPU execution and I/O wait
CPU burst distribution

5.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Histogram of CPU-burst Times

5.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Alternating Sequence of CPU And I/O Bursts

5.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

CPU Scheduler

Selects from among the processes in memory that are ready to execute,
and allocates the CPU to one of them
CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates

Scheduling under 1 and 4 is nonpreemptive
All other scheduling is preemptive

5.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatcher

Dispatcher module gives control of the CPU to the process
selected by the short-term scheduler; this involves:

switching context
switching to user mode
jumping to the proper location in the user program to restart
that program

Dispatch latency – time it takes for the dispatcher to stop one
process and start another running

5.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Criteria

CPU utilization – keep the CPU as busy as possible
Throughput – # of processes that complete their execution per
time unit
Turnaround time – amount of time to execute a particular process
Waiting time – amount of time a process has been waiting in the
ready queue
Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

5.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduling Algorithm Optimization Criteria

Max CPU utilization
Max throughput
Min turnaround time
Min waiting time
Min response time

5.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

5.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

FCFS Scheduling (Cont)

Suppose that the processes arrive in the order
P2 , P3 , P1

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better than previous case
Convoy effect short process behind long process

P1P3P2

63 300

5.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Shortest-Job-First (SJF) Scheduling

Associate with each process the length of its next CPU burst. Use these
lengths to schedule the process with the shortest time
SJF is optimal – gives minimum average waiting time for a given set of
processes

The difficulty is knowing the length of the next CPU request

5.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of SJF

Process Arrival Time Burst Time
P1 0.0 6
P2 2.0 8
P3 4.0 7
P4 5.0 3

SJF scheduling chart

Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4 P3P1

3 160 9

P2

24

5.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Determining Length of Next CPU Burst

Can only estimate the length
Can be done by using the length of previous CPU bursts, using exponential
averaging

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of length actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .11 nnn t ταατ −+==

5.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Prediction of the Length of the Next CPU Burst

5.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Examples of Exponential Averaging

α =0
τn+1 = τn

Recent history does not count
α =1

τn+1 = α tn
Only the actual last CPU burst counts

If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α)j α tn -j + …
+(1 - α)n +1 τ0

Since both α and (1 - α) are less than or equal to 1, each successive term
has less weight than its predecessor

5.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Priority Scheduling

A priority number (integer) is associated with each process
The CPU is allocated to the process with the highest priority (smallest
integer ≡ highest priority)

Preemptive
nonpreemptive

SJF is a priority scheduling where priority is the predicted next CPU burst
time
Problem ≡ Starvation – low priority processes may never execute
Solution ≡ Aging – as time progresses increase the priority of the process

5.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
process is preempted and added to the end of the ready queue.
If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time in
chunks of at most q time units at once. No process waits more
than (n-1)q time units.
Performance

q large ⇒ FIFO
q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

5.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of RR with Time Quantum = 4

Process Burst Time
P1 24
P2 3
P3 3

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

5.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time Quantum and Context Switch Time

5.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Turnaround Time Varies With The Time Quantum

5.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue

Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)
Each queue has its own scheduling algorithm

foreground – RR
background – FCFS

Scheduling must be done between the queues
Fixed priority scheduling; (i.e., serve all from foreground then from
background). Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time which it can
schedule amongst its processes; i.e., 80% to foreground in RR
20% to background in FCFS

5.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Queue Scheduling

5.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queue

A process can move between the various queues; aging can be
implemented this way
Multilevel-feedback-queue scheduler defined by the following
parameters:

number of queues
scheduling algorithms for each queue
method used to determine when to upgrade a process
method used to determine when to demote a process
method used to determine which queue a process will enter
when that process needs service

5.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example of Multilevel Feedback Queue

Three queues:
Q0 – RR with time quantum 8 milliseconds
Q1 – RR time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q1.
At Q1 job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.

5.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multilevel Feedback Queues

5.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Scheduling

Distinction between user-level and kernel-level threads
Many-to-one and many-to-many models, thread library schedules
user-level threads to run on LWP

Known as process-contention scope (PCS) since scheduling
competition is within the process

Kernel thread scheduled onto available CPU is system-contention
scope (SCS) – competition among all threads in system

5.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling

API allows specifying either PCS or SCS during thread creation
PTHREAD SCOPE PROCESS schedules threads using PCS
scheduling
PTHREAD SCOPE SYSTEM schedules threads using SCS
scheduling.

5.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API

#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5
int main(int argc, char *argv[])
{

int i;
pthread t tid[NUM THREADS];
pthread attr t attr;
/* get the default attributes */
pthread attr init(&attr);
/* set the scheduling algorithm to PROCESS or SYSTEM */
pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);
/* set the scheduling policy - FIFO, RT, or OTHER */
pthread attr setschedpolicy(&attr, SCHED OTHER);
/* create the threads */
for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

5.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthread Scheduling API

/* now join on each thread */
for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);
}
/* Each thread will begin control in this function */

void *runner(void *param)
{

printf("I am a thread\n");
pthread exit(0);

}

5.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multiple-Processor Scheduling

CPU scheduling more complex when multiple CPUs are
available
Homogeneous processors within a multiprocessor
Asymmetric multiprocessing – only one processor
accesses the system data structures, alleviating the need
for data sharing
Symmetric multiprocessing (SMP) – each processor
is self-scheduling, all processes in common ready queue,
or each has its own private queue of ready processes
Processor affinity – process has affinity for processor
on which it is currently running

soft affinity
hard affinity

5.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

NUMA and CPU Scheduling

(figure 5.9)

5.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Processors

Recent trend to place multiple processor cores on same physical chip
Faster and consume less power
Multiple threads per core also growing

Takes advantage of memory stall to make progress on another thread
while memory retrieve happens

5.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Multicore System

(figure 5.10)

5.36 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

Solaris scheduling
Windows XP scheduling
Linux scheduling

5.37 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Dispatch Table

5.38 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris Scheduling

(figure 5.13)

5.39 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Priorities

5.40 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Scheduling

Constant order O(1) scheduling time
Two priority ranges: time-sharing and real-time
Real-time range from 0 to 99 and nice value from 100 to 140
(figure 5.15)

5.41 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The Relationship Between Priorities and Time-slice length

5.42 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

List of Tasks Indexed According to Priorities

5.43 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Algorithm Evaluation

Deterministic modeling – takes a particular
predetermined workload and defines the performance of
each algorithm for that workload
Queueing models
Implementation

5.44 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

5.15

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 5

5.46 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

5.08

5.47 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.7

5.48 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.8

5.49 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

In-5.9

5.50 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Dispatch Latency

5.51 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Thread Scheduling

JVM Uses a Preemptive, Priority-Based Scheduling Algorithm

FIFO Queue is Used if There Are Multiple Threads With the Same Priority

5.52 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Thread Scheduling (cont)

JVM Schedules a Thread to Run When:

1. The Currently Running Thread Exits the Runnable State
2. A Higher Priority Thread Enters the Runnable State

* Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not

5.53 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Time-Slicing

Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method
May Be Used:

while (true) {
// perform CPU-intensive task
. . .
Thread.yield();

}

This Yields Control to Another Thread of Equal Priority

5.54 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Priorities

Priority Comment
Thread.MIN_PRIORITY Minimum Thread Priority
Thread.MAX_PRIORITY Maximum Thread Priority
Thread.NORM_PRIORITY Default Thread Priority

Priorities May Be Set Using setPriority() method:
setPriority(Thread.NORM_PRIORITY + 2);

5.55 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Solaris 2 Scheduling

	Chapter 5: CPU Scheduling
	Chapter 5: CPU Scheduling
	Objectives
	Basic Concepts
	Histogram of CPU-burst Times
	Alternating Sequence of CPU And I/O Bursts
	CPU Scheduler
	Dispatcher
	Scheduling Criteria
	Scheduling Algorithm Optimization Criteria
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont)
	Shortest-Job-First (SJF) Scheduling
	Example of SJF
	Determining Length of Next CPU Burst
	Prediction of the Length of the Next CPU Burst
	Examples of Exponential Averaging
	Priority Scheduling
	Round Robin (RR)
	Example of RR with Time Quantum = 4
	Time Quantum and Context Switch Time
	Turnaround Time Varies With The Time Quantum
	Multilevel Queue
	Multilevel Queue Scheduling
	Multilevel Feedback Queue
	Example of Multilevel Feedback Queue
	Multilevel Feedback Queues
	Thread Scheduling
	Pthread Scheduling
	Pthread Scheduling API
	Pthread Scheduling API
	Multiple-Processor Scheduling
	NUMA and CPU Scheduling
	Multicore Processors
	Multithreaded Multicore System
	Operating System Examples
	Solaris Dispatch Table
	Solaris Scheduling
	Windows XP Priorities
	Linux Scheduling
	The Relationship Between Priorities and Time-slice length
	List of Tasks Indexed According to Priorities
	Algorithm Evaluation
	5.15
	End of Chapter 5
	5.08
	In-5.7
	In-5.8
	In-5.9
	Dispatch Latency
	Java Thread Scheduling
	Java Thread Scheduling (cont)
	Time-Slicing
	Thread Priorities
	Solaris 2 Scheduling

