
Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

Chapter 4: Threads

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Chapter 4: Threads

Overview
Multithreading Models
Thread Libraries
Threading Issues
Operating System Examples
Windows XP Threads
Linux Threads

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

To introduce the notion of a thread — a fundamental unit of CPU utilization
that forms the basis of multithreaded computer systems
To discuss the APIs for the Pthreads, Win32, and Java thread libraries
To examine issues related to multithreaded programming

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Single and Multithreaded Processes

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits

Responsiveness

Resource Sharing

Economy

Scalability

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multicore Programming

Multicore systems putting pressure on programmers, challenges include
Dividing activities
Balance
Data splitting
Data dependency
Testing and debugging

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreaded Server Architecture

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Concurrent Execution on a Single-core System

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Parallel Execution on a Multicore System

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

User Threads

Thread management done by user-level threads library

Three primary thread libraries:
POSIX Pthreads
Win32 threads
Java threads

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Kernel Threads

Supported by the Kernel

Examples
Windows XP/2000
Solaris
Linux
Tru64 UNIX
Mac OS X

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Multithreading Models

Many-to-One

One-to-One

Many-to-Many

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One

Many user-level threads mapped to single kernel thread
Examples:

Solaris Green Threads
GNU Portable Threads

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-One Model

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-One

Each user-level thread maps to kernel thread
Examples

Windows NT/XP/2000
Linux
Solaris 9 and later

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

One-to-one Model

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

Allows many user level threads to be mapped to many kernel
threads
Allows the operating system to create a sufficient number of
kernel threads
Solaris prior to version 9
Windows NT/2000 with the ThreadFiber package

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Many-to-Many Model

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

Similar to M:M, except that it allows a user thread to be
bound to kernel thread
Examples

IRIX
HP-UX
Tru64 UNIX
Solaris 8 and earlier

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Two-level Model

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Libraries

Thread library provides programmer with API for creating and managing
threads
Two primary ways of implementing

Library entirely in user space
Kernel-level library supported by the OS

4.22 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

May be provided either as user-level or kernel-level
A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization
API specifies behavior of the thread library, implementation
is up to development of the library
Common in UNIX operating systems (Solaris, Linux, Mac
OS X)

4.23 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Java Threads

Java threads are managed by the JVM

Typically implemented using the threads model provided by
underlying OS

Java threads may be created by:

Extending Thread class
Implementing the Runnable interface

4.24 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

Semantics of fork() and exec() system calls
Thread cancellation of target thread

Asynchronous or deferred
Signal handling
Thread pools
Thread-specific data
Scheduler activations

4.25 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Semantics of fork() and exec()

Does fork() duplicate only the calling thread or all threads?

4.26 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Cancellation

Terminating a thread before it has finished
Two general approaches:

Asynchronous cancellation terminates the target
thread immediately
Deferred cancellation allows the target thread to
periodically check if it should be cancelled

4.27 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred
A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

Options:
Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process
Deliver the signal to certain threads in the process
Assign a specific threa to receive all signals for the process

4.28 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Pools

Create a number of threads in a pool where they await work
Advantages:

Usually slightly faster to service a request with an existing thread
than create a new thread
Allows the number of threads in the application(s) to be bound to
the size of the pool

4.29 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Specific Data

Allows each thread to have its own copy of data
Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

4.30 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Scheduler Activations

Both M:M and Two-level models require communication to maintain
the appropriate number of kernel threads allocated to the application
Scheduler activations provide upcalls - a communication mechanism
from the kernel to the thread library
This communication allows an application to maintain the correct
number kernel threads

4.31 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Operating System Examples

Windows XP Threads
Linux Thread

4.32 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

4.33 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

4.34 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Windows XP Threads

Implements the one-to-one mapping, kernel-level
Each thread contains

A thread id
Register set
Separate user and kernel stacks
Private data storage area

The register set, stacks, and private storage area are known
as the context of the threads
The primary data structures of a thread include:

ETHREAD (executive thread block)
KTHREAD (kernel thread block)
TEB (thread environment block)

4.35 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Linux Threads

Linux refers to them as tasks rather than threads

Thread creation is done through clone() system call

clone() allows a child task to share the address space
of the parent task (process)

Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition,

End of Chapter 4

	Chapter 4: Threads
	Chapter 4: Threads
	Objectives
	Single and Multithreaded Processes
	Benefits
	Multicore Programming
	Multithreaded Server Architecture
	Concurrent Execution on a Single-core System
	Parallel Execution on a Multicore System
	User Threads
	Kernel Threads
	Multithreading Models
	Many-to-One
	Many-to-One Model
	One-to-One
	One-to-one Model
	Many-to-Many Model
	Many-to-Many Model
	Two-level Model
	Two-level Model
	Thread Libraries
	Pthreads
	Java Threads
	Threading Issues
	Semantics of fork() and exec()
	Thread Cancellation
	Signal Handling
	Thread Pools
	Thread Specific Data
	Scheduler Activations
	Operating System Examples
	Windows XP Threads
	Linux Threads
	Windows XP Threads
	Linux Threads
	End of Chapter 4

