From: John Sarraillé <john@ishi.csustan.edu>
Subject: Re: Solution for foodPass
Date: October 28, 2010 13:17:34 PDT
To: undisclosed-recipients:;

From: John Sarraillé <john@ishi.csustan.edu>
Date: October 28, 2010 13:15:43 PDT

To: Julie D Gorman <julie@cs.csustan.edu>
Subject: Re: Solution for foodPass

Thanks Julie --

It looks like the 'foodPass' code is due for
time-being, I'll modify the Makefile for the
pass along advice to the students to 'ignore
my Mac, and the compiled code seemed to pass

developing a solution to the problem.

-~ js

John Sarraillé, Professor, Comp. Sci.
CSU Stanislaus || john@ishi.csustan.edu
(209) 667-3345 || (209) 634-1904

some re-writing to conform to changes
Mac computer that I posted to include
the warnings' they get when compiling
a few preliminary tests without error.
also advise students to include testing the code on one of the sun workstations as

On Oct 28, 2010, at 10:16, Julie D Gorman wrote:

John,
If we add

-fpermissive

into tabs or you will get syntax errors.

HOH R R R R R

foodPass: foodPass.o sem.o

foodPass.o: foodPass.cpp sem.h

g++ -fpermissive -c foodPass.cpp
sem.o: sem.cpp sem.h

g++ -fpermissive -c sem.cpp

g++ -fpermissive -c foodPass.cpp

g++ -fpermissive -c sem.cpp

¢

sem.cpp:97: warning: cast from

g++ -fpermissive -o foodPass foodPass.o sem.o

julie@goldberry.csustan.edu:(~/programming/os) make

foodPass.cpp: In function ‘void* Diner(void*)’:
foodPass.cpp:253: warning: cast from ‘void*’ to ‘int’ loses precision

‘int’
‘int’

‘int’
‘int’

to the g++ statements in the Makefile, foodPass will compile.

Note: you need to make sure that the indented lines below
are made with TABS. If you just cut and paste from your
browser window, probably the tabs will be 'translated' into
a series of blanks. So check and change the indents back

This may cause other errors to also be ignored but warnings will be issued.

sem.cpp: In function ‘void enq_sem_Q(sim_sem_data*, sim_PCB*)’:
_opaque_pthread_t*’ to ‘int’ loses precision
sem.cpp: In function ‘void serve_sem_Q(sim_sem_data*)’:
sem.cpp:118: warning: cast from ‘sim_sem_data*’ to
sem.cpp:134: warning: cast from ‘sim_sem_data*’ to
sem.cpp: In function ‘void wait_sem(sim_sem_data*)’:
sem.cpp:157: warning: cast from ‘sim_sem_data*’ to
sem.cpp:172: warning: cast from ‘sim_sem_data*’ to

loses precision
loses precision

loses precision
loses precision

in C++ specifications. For the
the - fpermissive flag and I'll
on the Macs. I tried this on
As a temporary precaution, I'd
a part of their process of

sem.cpp:190: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:201: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:219: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp: In function ‘void signal_sem(sim_sem_data*)’:

sem.cpp:243: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:252: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:264: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:276: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
g++ -fpermissive -o foodPass foodPass.o sem.o

From the g++ man page
-fpermissive
Downgrade some diagnostics about nonconformant code from errors to warnings. Thus, using

-fpermissive will allow some nonconforming code to compile.

Julie

Julie D. Gorman, Computer Science, CSU Stanislaus
One University Circle Turlock, CA 95382 || 209 667-3273

"

julie@cs.csustan.edu || " All who wander are not lost

