
From: John Sarraillé <john@ishi.csustan.edu>
Subject: Re: Solution for foodPass

Date: October 28, 2010 13:17:34 PDT
To: undisclosed-recipients:;

From: John Sarraillé <john@ishi.csustan.edu>
Date: October 28, 2010 13:15:43 PDT
To: Julie D Gorman <julie@cs.csustan.edu>
Subject: Re: Solution for foodPass

Thanks Julie --

It looks like the 'foodPass' code is due for some re-writing to conform to changes in C++ specifications. For the
time-being, I'll modify the Makefile for the Mac computer that I posted to include the - fpermissive flag and I'll
pass along advice to the students to 'ignore the warnings' they get when compiling on the Macs. I tried this on
my Mac, and the compiled code seemed to pass a few preliminary tests without error. As a temporary precaution, I'd
also advise students to include testing the code on one of the sun workstations as a part of their process of
developing a solution to the problem.

-- js

===
John Sarraillé, Professor, Comp. Sci.
CSU Stanislaus || john@ishi.csustan.edu
(209) 667-3345 || (209) 634-1904
===
Unity
=======

On Oct 28, 2010, at 10:16, Julie D Gorman wrote:

John,

If we add

-fpermissive

to the g++ statements in the Makefile, foodPass will compile.

#
Note: you need to make sure that the indented lines below
are made with TABS. If you just cut and paste from your
browser window, probably the tabs will be 'translated' into
a series of blanks. So check and change the indents back
into tabs or you will get syntax errors.
#

foodPass: foodPass.o sem.o
 g++ -fpermissive -o foodPass foodPass.o sem.o
foodPass.o: foodPass.cpp sem.h
 g++ -fpermissive -c foodPass.cpp
sem.o: sem.cpp sem.h
 g++ -fpermissive -c sem.cpp

This may cause other errors to also be ignored but warnings will be issued.

julie@goldberry.csustan.edu:(~/programming/os) make
g++ -fpermissive -c foodPass.cpp
foodPass.cpp: In function ‘void* Diner(void*)’:
foodPass.cpp:253: warning: cast from ‘void*’ to ‘int’ loses precision
g++ -fpermissive -c sem.cpp
sem.cpp: In function ‘void enq_sem_Q(sim_sem_data*, sim_PCB*)’:
sem.cpp:97: warning: cast from ‘_opaque_pthread_t*’ to ‘int’ loses precision
sem.cpp: In function ‘void serve_sem_Q(sim_sem_data*)’:
sem.cpp:118: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:134: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp: In function ‘void wait_sem(sim_sem_data*)’:
sem.cpp:157: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:172: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision

sem.cpp:190: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:201: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:219: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp: In function ‘void signal_sem(sim_sem_data*)’:
sem.cpp:243: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:252: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:264: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
sem.cpp:276: warning: cast from ‘sim_sem_data*’ to ‘int’ loses precision
g++ -fpermissive -o foodPass foodPass.o sem.o

From the g++ man page

 -fpermissive
 Downgrade some diagnostics about nonconformant code from errors to warnings. Thus, using
 -fpermissive will allow some nonconforming code to compile.

Julie

===
Julie D. Gorman, Computer Science, CSU Stanislaus
One University Circle Turlock, CA 95382 || 209 667-3273
===
julie@cs.csustan.edu || " All who wander are not lost "
===

