6. DYNAMIC PROGRAMMING |

PEARSON
g

Addison
Wesley

» weighted interval scheduling
» segmented least squares
» knapsack problem

» RNA secondary structure

|
u

|

.-

\n rnrnm olnN
AT Lestn

JON KLEINBERG - EVA TARDOS

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:33 AM

Algorithmic paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into independent subproblems,
solve each subproblem, and combine solution to subproblems to form
solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
subproblems)\and build up solutions to larger and larger subproblems.

fancy name for
caching away intermediate results
in a table for later reuse

Dynamic programming history

Bellman. Pioneered the systematic study of dynamic programming in 1950s.

Etymology.
* Dynamic programming = planning over time.
» Secretary of Defense was hostile to mathematical research.
* Bellman sought an impressive name to avoid confrontation.

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time ¢ is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

Dynamic programming applications

Areas.
e Bioinformatics.

Control theory.

Information theory.

Operations research.

Some famous dynamic programming algorithms.
* Unix diff for comparing two files.

Viterbi for hidden Markov models.

De Boor for evaluating spline curves.

Smith-Waterman for genetic sequence alignment.

Bellman-Ford for shortest path routing in networks.

Cocke-Kasami-Younger for parsing context-free grammars.

Computer science: theory, graphics, Al, compilers, systems,

6. DYNAMIC PROGRAMMING |

» weighted interval scheduling

. & e
A . v £ 4l

£
y
' d

"

Alqorithm Desigr

JON KLEINBERG - EVA TARDOS

SECTION 6.1-6.2

Weighted interval scheduling

Weighted interval scheduling problem.
* Job j starts at s, finishes at f;, and has weight or value v,.
 Two jobs compatible if they don't overlap.
* Goal: find maximum weight subset of mutually compatible jobs.

» time

Earliest-finish-time first algorithm

Earliest finish-time first.
« Consider jobs in ascending order of finish time.
« Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

weight = 999 ——> b

weight=1 ——> a

» time

Weighted interval scheduling

Notation. Label jobs by finishing time: fi < f, <...<f,.

Def. p(j) = largest index i < j such that job i is compatible with ;.
Ex. p(8)=35,p(7)=3,p(2)=0.

time

O K
N
w
N
(O]
(@)}
~
(o)
O
o

11

Dynamic programming: binary choice

Notation. OPT(j) = value of optimal solution to the problem consisting of
job requests 1,2, ..., .

Case 1. OPT selects job .
* Collect profit v;.
* Can't use incompatible jobs {p(j) + 1,p(j) +2, ..., j—1}.
* Must include optimal solution to problem consisting of remaining

compatible jobs 1,2, ..., p()).
\ optimal substructure property
/ (proof via exchange argument)

Case 2. OPT does not select job ;.
* Must include optimal solution to problem consisting of remaining
compatible jobs 1,2, ..., j— 1.

0 if j=0
OPT(j)=
(/) {max{ v, + OPT(p(j)), OPT(j-1)} otherwise

Weighted interval scheduling: brute force

Input: n, s[l..n], f[1..n], v[1..n]
Sort jobs by finish time so that f[1] =< f[2] =< .. = f[n].
Compute p[1], p[2], .., pIn].

Compute-0pt(j)

if j =0
return O.
else

return max(v[j] + Compute-Opt(p[j]l, Compute-Opt(j-1))).

10

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant
subproblems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like
Fibonacci sequence.

ONONONONONO,
p(1) = 0, p(j) = j-2 @ @

recursion tree

11

Weighted interval scheduling: memoization

Memoization. Cache results of each subproblem; lookup as needed.

Input: n, s[l..n], f[1..n], v[1l..n]
Sort jobs by finish time so that f[1] =< f[2] =< .. = f[n].
Compute p[1], p[2], .., p[n].

for =1 to n
M[j] < empty.

M[O] « O.

M-Compute-0pt(j)

if M[j] is empty
M[j] < max(v[j] + M-Compute-Opt(p[j]), M-Compute-Opt(j - 1)).
return M[j].

12

Weighted interval scheduling: running time

Claim. Memoized version of algorithm takes O(n log n) time.
* Sort by finish time: O(n log n).
Computing p(-) : O(nlogn) via sorting by start time.

M-CoMPUTE-OPT(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j]
- (ii) fills in one new entry M[j] and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® =0, throughout ® < .
- (ii) increases ® by 1 = at most 2x recursive calls.

Overall running time of M-CoMPUTE-OPT(n) is O(n). =

Remark. O(n) if jobs are presorted by start and finish times.

13

Weighted interval scheduling: finding a solution

Q. DP algorithm computes optimal value. How to find solution itself?
A. Make a second pass.

Find-Solution(3j)

if J =0
return .

else if (v[jl + M[p[j1] > M[j-11)
return {j } U Find-Solution(p[j]).

else

return Find-Solution(j-1).

Analysis. # of recursive calls <n = O(n).

14

Weighted interval scheduling: bottom-up

Bottom-up dynamic programming. Unwind recursion.

BOTTOM-UP (n, S1, ..., Su, f1, coo, fu, V1, «.o, Vi)

Sort jobs by finish time sothat fi < > <... <f,.

Compute p(1), p(2), ..., p(n).
M[0] « 0.
FOorRj=1TOn
M[j]« max {v; + M[p(j)], M[j-1]}.

15

6. DYNAMIC PROGRAMMING |

» segmented least squares

> “ 3
\ OV
.

f Wl
g ¢

/

N\ Algorithm Desigr

}\ JON KLEINBERG - EVA TARDOS

SECTION 6.3

Least squares

Least squares. Foundational problem in statistics.
* Given n points in the plane: (xi1, 1), (x2,2), ..., (xn, Yn)-
* Find a line y = ax + b that minimizes the sum of the squared error:

SSE = i(yi—axl-—b)2

i=1

Solution. Calculus = min error is achieved when

a=i’l2ixiyi _(El’xi)(ziyi) b=El~yi —-a i‘xi
n Eixi2 - (Eixi)z ’ n

17

Segmented least squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
* Given n points in the plane: (xi, 1), (x2,2), ..., (xn, y») With
x1 <x2<..<xs find a sequence of lines that minimizes 7(x).

Q. What is a reasonable choice for f(x) to balance accuracy and parsimony?

I !

goodness of fit number of lines

v

18

Segmented least squares

Given n points in the plane: (xi1, y1), (x2,12), ..., (xn, yn) With x1<x2<...<x, and a
constant ¢ > 0, find a sequence of lines that minimizes f(x)=E + ¢ L:

£ =the sum of the sums of the squared errors in each segment.

* L =the number of lines.

19

Dynamic programming: multiway choice

Notation.
* OPT(j) = minimum cost for points pi,p2, ...,p;

* e(i,j) = minimum sum of squares for points pi, pi+1, ..., p;.

To compute OPT(j):
* Last segment uses points p;, pi+1, ..., p; for some i.

* Cost=c¢e(i,j) + ¢ + OPT(i—1). <«—— optimal substructure property
(proof via exchange argument)

0 if j=0
OPT(j)= min { e(i,j) +c+ OPT(i-1)} otherwise

l<sis<j

20

Segmented least squares algorithm

SEGMENTED-LEAST-SQUARES (n, pi, ..., pn, C)

FOR j=1TO n
FOR 1=1TO j

Compute the least squares e(i, j) for the segment p;, pi+1, ..., p;.

M[0] « 0.
FOR j=1TO n
M[jl+<— mini<i<; {e; +tc+M[i-1]}.

RETURN M(n].

21

Segmented least squares analysis

Theorem. [Bellman 1961] The dynamic programming algorithm solves the
segmented least squares problem in O(n3) time and O(?2) space.

Pf.
* Bottleneck = computing e(i, j) for O(n2) pairs.
* O(n) per pair using formula. =

=nzixiyi —(E,-xl-)(ziy,-) b=2iyl- —ap.X;

2 2
ny.x; =X L

a

Remark. Can be improved to O(n?) time and O(n) space by precomputing
various statistics. How?

22

6. DYNAMIC PROGRAMMING |

» knapsack problem

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 6.4

Knapsack problem

Given n objects and a "knapsack.”

ltem i weighs w; >0 and has value v; > 0.

Knapsack has capacity of w.

Goal: fill knapsack so as to maximize total value.

1 1 1
Ex. {1,2,5} has value 35. ’ 6 2
Ex. {3,4} has value 40. 3 18 5
Ex. {3,5} has value 46 (but exceeds weight limit). 4 22 6
5 28 7

knapsack instance
(weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v..
Greedy by weight. Repeatedly add item with minimum w;.
Greedy by ratio. Repeatedly add item with maximum ratio v/ wi.

Observation. None of greedy algorithms is optimal.

24

Dynamic programming: false start

Def. OPT(i) = max profit subset of items 1, ..., ..

Case 1. OPT does not select item i.

* OPT selects bestof {1,2,...,i—1}.

\ optimal substructure property
(proof via exchange argument)

Case 2. OPT selects item i.
* Selecting item i does not immediately imply that we will have to reject

other items.
* Without knowing what other items were selected before i,

we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

25

Dynamic programming: adding a new variable

Def. OPT(i,w) = max profit subset of items 1, ...,i with weight limit w.

Case 1. OPT does not select item i.
* OPT selects bestof {1,2,...,i—1} using weight limit w.
. \ optimal substructure property
Case 2. OPT selects item i. NV (proof via exchange argument)
* New weight limit = w — w..
* OPT selects best of {1,2,...,i—1} using this new weight limit.

[0 if 1=0
OPT(i,w)=30OPT(i-1,w) if w,>w
‘max{ OPT(i-1,w), v;+ OPT(i-1,w-w,)} otherwise

26

Knapsack problem: bottom-up

KNAPSACK (n, W, wi, ..., Wn, V1, ..., Vi)

FOR w=0TO W
M0, w] « 0.

FOR i=1TOn
ForR w=1T1TO W
IF wWi>w) M[i,w] «— M[i—1, w].

ELSE M[i,w] «— max {M[i—1,w], i +M[i—1,w—wi]}.

RETURN M([n, W].

27

Knapsack problem: bottom-up demo

Vi

subset
of items
1, ..,

18
22

28

{1,2}

{1,2,3}

{1,2,3,4}

{1,2,3,4,5}

Wi

! 0 if i=0

2 OPT(i,w)=4{0PT(i-1,w) if w,>w
5 max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise
6

7

weight limit w
B ERREREDEER
0 0 0 0 0 0 0 0 0 0 0

0
-
0 1 1 1 1 1 1 1 1 1 1 1
4
0

0 1 6 V4 7/ 18 22 28 29 34 34

OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

28

Knapsack problem: running time

Theorem. There exists an algorithm to solve the knapsack problem with n
items and maximum weight Win ©(n W) time and ©(n W) space.
Pf. weights are integers
. between 1 and W

* Takes O(1) time per table entry.

* There are O(n W) table entries.

« After computing optimal values, can trace back to find solution:

take item i in OPTG,w) iff M[i,w] < M[i—1,w]. =

Remarks.
* Not polynomial in input size! <«— "pseudo-polynomial’
* Decision version of knapsack problem is NP-COMPLETE. [CHAPTER 8 |
* There exists a poly-time algorithm that produces a feasible solution that
has value within 1% of optimum. [SECTION 11.8]

29

6. DYNAMIC PROGRAMMING |

> “ 3
\ OV
.

ol
£
1 y
' d

P » RNA secondary structure

/

N\ Algorithm Desigr

}\ JON KLEINBERG - EVA TARDOS

SECTION 6.5

RNA secondary structure

RNA. String B=bb,...b, over alphabet {A,C,G,U }.

Secondary structure. RNA is single-stranded so it tends to loop back and

form base pairs with itself. This structure is essential for understanding
behavior of molecule.

C——A
/S AN
A A
AN /S
AN G—C
| /\
C----G U A A G
7 o |
PN | T_U_U\G/A
A C—C—cC—U L
| o y
C G C G A G----C
N S | |
G
A---- U
L

RNA secondary structure for GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

31

RNA secondary structure

Secondary structure. A set of pairs S = { (b;, b) } that satisfy:
* [Watson-Crick] S is a matching and each pair in S is a Watson-Crick
complement: A-U, U-A, C-G, or G-C.
* [No sharp turns] The ends of each pair are separated by at least 4
intervening bases. If (b,,b) €S, theni < j — 4.
* [Non-crossing] If (b, b) and (b, b¢) are two pairs in S, then we cannot

have i<k<j</.

Free energy. Usual hypothesis is that an RNA molecule will form the
secondary structure with the minimum total free energy.

\

approximate by number of base pairs

Goal. Given an RNA molecule B=b,b,...b,, find a secondary structure S
that maximizes the number of base pairs.

32

RNA secondary structure

Examples.

G— G

/ N

C u

N\ /
(G, G
|
By U
I
Yomco- A

base pair

RN

A UGCUGGCCCAU

ok

G
7\
G G
|/
(o G
_—
[\ U
|
U--nne A

7\

A UGCGCGGCAU

sharp turn
(<4 intervening bases)

C— G
/ N
C u
N /
c
| >
A G
|
Uoeoe A

(N

A GCGUUGGCCCAU

crossing

33

RNA secondary structure: subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring b,b, ... b,

match b: and bn

Choice. Match b, and b,.

Difficulty. Results in two subproblems but one of wrong form.
* Find secondary structure in bb,... b, ,. «— OPT(t-1)
* Find secondary structure in b, .\b,,...b, ;. <«— need more subproblems

34

Dynamic programming over intervals

Notation. OPT(i, j)= maximum number of base pairs in a secondary
structure of the substring b,b,,,... b,
Case 1. Ifi = j—4.

* OPT(i, j) =0 by no-sharp turns condition.

Case 2. Base b;is not involved in a pair.
* OPT(, j)=OPTG, j-1).

Case 3. Base b; pairs with b, for some i <t < j — 4.
* Noncrossing constraint decouples resulting subproblems.
* OPT@,j)=1+max;{ OPT(i, t—1)+ OPT(t+1, j—1) }.

\

take max over t such thati <t<j-4 and
bt and b; are Watson-Crick complements

35

Bottom-up dynamic programming over intervals

Q. In which order to solve the subproblems?
A. Do shortest intervals first.

RNA (1, by, ..., bu) J
6 78 9 10
FOR k=5TONn—-1 4 0 0 0
FOR i=1TOn—k 3 0 0
j— itk | 2 0
Compute M[i, j] using formula.] -/./

RETURN M[1, n].

order in which to solve subproblems

Theorem. The dynamic programming algorithm solves the RNA secondary
substructure problem in O®3) time and O(n?) space.

36

Dynamic programming summary

Outline.
* Polynomial number of subproblems.
» Solution to original problem can be computed from subproblems.
* Natural ordering of subproblems from smallest to largest, with an easy-
to-compute recurrence that allows one to determine the solution to a
subproblem from the solution to smaller subproblems.

Techniques.
* Binary choice: weighted interval scheduling.
« Multiway choice: segmented least squares.
« Adding a new variable: knapsack problem.
* Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up. Different people have different intuitions.

37

