5. DivIDE AND CONQUER |

PEARSON
g

Addison
Wesley

mergesort

counting inversions

closest pair of points

randomized quicksort

median and selection

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Oct 2, 2013 9:51 AM




Divide-and-conquer paradigm

Divide-and-conquer.
* Divide up problem into several subproblems.
* Solve each subproblem recursively.
« Combine solutions to subproblems into overall solution.

Most common usage.
* Divide problem of size n into two subproblems of size n/2 in linear time.
* Solve two subproblems recursively.
« Combine two solutions into overall solution in linear time.

Consequence.

* Brute force: O®?). DIVIDE
ET IMPER A

* Divide-and-conquer: O(n log n).

FY, N v

attributed to Julius Caesar



5. DIVIDE AND CONQUER

» mergesort

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.1



Sorting problem

Problem. Given a list of n elements from a totally-ordered universe,
rearrange them in ascending order.

Born In The U.S.A.
Bruce Springsteen

Name Artist 4 Time Album ‘
12 ¥ Let It Be The Beatles 4:03 LetltBe
13 ™ Take My Breath Away BERLIN 4:13 Top Gun - Soundtrack
14 & Circle Of Friends Better Than Ezra 3:27 Empire Records
15 # Dancing With Myself Billy Idol 4:43 Don't Stop
16 ¥ Rebel Yell Billy Idol 4:49 Rebel Yell
17 ¥ Piano Man Billy Joel 5:36 Greatest Hits Vol. 1
18 ¥ Pressure Billy Joel 3:16 Greatest Hits, Vol. Il (1978 - 1985) (Disc 2)
19 ™ The Longest Time Billy Joel 3:36 Greatest Hits, Vol. Il (1978 - 1985) (Disc 2)
20 ¥ Atomic Blondie 3:50 Atomic: The Very Best Of Blondie
21 ™ Sunday Girl Blondie 3:15 Atomic: The Very Best Of Blondie
22 ¥ Call Me Blondie 3:33 Atomic: The Very Best Of Blondie
23 ™ Dreaming Blondie 3:06 Atomic: The Very Best Of Blondie
24 ¥ Hurricane Bob Dylan 8:32 Desire
25 ™ The Times They Are A-Changin'  Bob Dylan 3:17 Greatest Hits
26 ¥ Livin' On A Prayer Bon Jovi 4:11 Cross Road
27 ™ Beds Of Roses Bon Jovi 6:35 Cross Road
28 ¥ Runaway Bon Jovi 3:53 Cross Road
29 ™ Rasputin (Extended Mix) Boney M 5:50 Greatest Hits |
30 ¥ Have You Ever Seen The Rain Bonnie Tyler 4:10 Faster Than The Speed Of Night ‘
31 ™ Total Eclipse Of The Heart Bonnie Tyler 7:02 Faster Than The Speed Of Night
32 ¥ Straight From The Heart Bonnie Tyler 3:41 Faster Than The Speed Of Night
33 # Holding Out For A Hero Bonny Tyler 5:49 Meat Loaf And Friends
34  ~ Dancing In The Dark © Bruce Springsteen @ 4:05 Born In The U.S.A.
35 ™ Thunder Road Bruce Springsteen 4:51 Born To Run
36 ™ Born To Run Bruce Springsteen 4:30 Born To Run
37 # Jungleland Bruce Springsteen 9:34 Born To Run :
20 2 Tieol Tiienl Tiicnl (To €. i Tho Ducdc 3.£7  Frcencs Miman Tho Coavndeeacle (Mice ) [

) <>




Sorting applications

Obvious applications.
* Organize an MP3 library.
» Display Google PageRank results.
» List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
» |dentify statistical outliers.
* Binary search in a database.
« Remove duplicates in a mailing list.

Non-obvious applications.
« Convex hull.

Closest pair of points.

Interval scheduling / interval partitioning.

Minimum spanning trees (Kruskal's algorithm).

Scheduling to minimize maximum lateness or average completion time.



Mergesort

* Recursively sort left half.
« Recursively sort right hallf.
* Merge two halves to make sorted whole.

First Draft

ofa
S Report on the
EDVAC

John von Neumann

input

sort left half

A G L 0) R

sort right half

merge results

A G H I L M 0] R S T



Merging

Goal. Combine two sorted lists A and B into a sorted whole C.
* Scan A and B from left to right.
* Compare a; and b,.
* If a; < b;, append a; to C (no larger than any remaining element in B).
* If a; > bj, append b; to C (smaller than every remaining element in A).

sorted list A sorted list B

ai 18 b 17 23

merge to form sorted list C

2 3 / 10 11



A useful recurrence relation

Def. T(n) = max number of compares to mergesort a list of size < n.
Note. T(n) is monotone nondecreasing.

Mergesort recurrence.

0 ifn=1
I(n) < T([n/2]) + T(|n/2]) + n otherwise

Solution. T(n) is O(n log, n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume » is a power of 2 and replace < with =.



Divide-and-conquer recurrence: proof by recursion tree

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

N\

0 ifn=1 isaaS Spljnr\?vle?rgorf] 2
T(n) = .
2T(n/2) + n  otherwise
Pf 1.
T'(n) n =n
T(nl/2) T(n/2) 2 (n/2) = n
T(n/4) T(n/4) T(n/4) T(n/4) 4 (n/4) ~n

T(n/8) Tn/8) Twm/8) Tm/8 Tm/8) Tmn/8) Twm/8) T(n/8Y) 8 (n/8) = n

T(n)=nlgn



Proof by induction

Proposition. If T(n) satisfies the following recurrence, then T'(n) = n log; n.

. 0 ifn=1
() = 2T(n/2) + n  otherwise

Pf 2. [by induction on n]
* Base case: whenn=1, T(1) = 0.
 Inductive hypothesis: assume T(n) = n log, n.
e Goal: show that T(2r) = 2nlog, (2n).

T(2n)

2T(n) +2n
= 2nlogon +2n
= 2n(log2(2n)—1) +2n

= 2nlog>(2n). =

N\

assuming n
is a power of 2

10



Analysis of mergesort recurrence

Claim. If T(n) satisfies the following recurrence, then 7T(n) <n[log: n].

T(n) =< T([n/2]) + T(|n/2]) + n otherwise

Pf. [by strong induction on #]
* Base case: n=1.
* Define n;=|n/2| and n,=[n/2].
* Induction step: assume true for 1,2, ...,n—1.

ne = [n/2]

T(n) < | 2Mee2m1 /9

IA

T(n) + T(n2) + n

< ni[logani| + nm2[logana| + n = 2lleg2nl /9

IA

ni[loganz] + n2[loganz] + n

]+
1

= n [logany

A

logy g < [logyn| — 1

< n([logan]-1) +n

= n[logan]. =

11



5. DIVIDE AND CONQUER

» counting inversions

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.3



Counting inversions

Music site tries to match your song preferences with others.
* You rank n songs.
* Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
* My rank: 1,2, ..., n.
* Your rank: ay,a,, ..., a,.

* Songs i and; are inverted if i < j, butq; > a;.

A8 lclole
e 1 2 3 4 5

m

3 4 2 5

you 1

2 inversions: 3-2,4-2

Brute force: check all ®(#?) pairs.



Counting inversions: applications

* Voting theory.

» Collaborative filtering.

* Measuring the "sortedness” of an array.

« Sensitivity analysis of Google's ranking function.
« Rank aggregation for meta-searching on the Web.

 Nonparametric statistics (e.g., Kendall's tau distance).

Rank Aggregation Methods for the Web

Cynthia Dwork- Ravi Kumart Moni Naor* D. Sivakumar?

ABSTRACT

We consider the problem of combining ranking results from
various sources. In the context of the Web, the main ap-
plications include building meta-search engines, combining
ranking functions, selecting documents based on multiple
criteria, and improving search precision through word asso-
ciations. We develop a set of techniques for the rank aggre-
gation problem and compare their performance to that of
well-known methods. A primary goal of our work is to de-
sign rank aggregation techniques that can effectively combat
“spam,” a serious problem in Web searches. Experiments
show that our methods are simple, efficient, and effective.

Keywords: rank aggregation, ranking functions, meta-
search, multi-word queries, spam

14



Counting inversions: divide-and-conquer

Divide: separate list into two halves 4 and B.

Conquer: recursively count inversions in each list.

Return sum of three counts.

input

1 5 4 8 10 2 6 9 3 7/

count inversions in left half A count inversions in right half B
1 5 4 8 10 2 6 9 3 7
5-4 6-3 9-3 9-7

count inversions (a, b) withac Aand b B

1 5 4 8 10 2 6 9 3 7

4-2 4-3 5-2 5-3 8-2 8-3 8-6 8-7 10-2 10-3 10-6 10-7 10-9

output1 + 3 + 13 =17

Combine: count inversions (a, b) with a € 4 and b € B.

15



Counting inversions: how to combine two subproblems?

Q. How to count inversions (a, b) with a €4 and b € B?
A. Easy if 4 and B are sorted!

Warmup algorithm.
* Sort 4 and B.
* For each element b € B,
- binary search in 4 to find how elements in 4 are greater than 5.

list A list B

7/ 10 18 3 14 17 23 2 11 16
sort A sort B

3 7 10 14 18 2 11 16 17 23

binary search to count inversions (a, b) witha< Aand b € B

3 / 10 14 18 2 11 16 17 23

5 2 1 1 0



Counting inversions: how to combine two subproblems?

Count inversions (a, b) with a €4 and b € B, assuming 4 and B are sorted.
* Scan 4 and B from left to right.
* Compare a; and b,.

If a; < bj, then a; is not inverted with any element left in B.

If a; > bj, then b; is inverted with every element left in 4.
Append smaller element to sorted list C.

count inversions (a, b) withac Aand b B

ai 18 b 17 23

t 52 4

merge to form sorted list C

2 3 / 10 11



Counting inversions: divide-and-conquer algorithm implementation

Input. List L.
Output. Number of inversions in L and sorted list of elements L'.

SORT-AND-COUNT (L)

IF list L has one element
RETURN (0, L).

DIVIDE the list into two halves 4 and B.
(74 , A) «— SORT-AND-COUNT(A).
(r8 , B) «— SORT-AND-COUNT(B).
(748 , L") «— MERGE-AND-COUNT(4, B).

RETURN (r4+rg+rag, L")

18



Counting inversions: divide-and-conquer algorithm analysis

Proposition. The sort-and-count algorithm counts the number of inversions
in a permutation of size n in O(n log n) time.

Pf. The worst-case running time T(n) satisfies the recurrence:

T(n) = T([n/2]) + T(|n/2]) + ®(n) otherwise

19



5. DIVIDE AND CONQUER

» closest pair of points

\A\qnul Desi

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 5.4



Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

» Special case of nearest neighbor, Euclidean MST, Voronoi.

N /
—

fast closest pair inspired fast algorithms for these problems

21



Closest pair of points

Closest pair problem. Given n points in the plane, find a pair of points
with the smallest Euclidean distance between them.

Brute force. Check all pairs with ©(#2) distance calculations.
1d version. Easy O(nlog n) algorithm if points are on a line.

Nondegeneracy assumption. No two points have the same x-coordinate.




Closest pair of points: first attempt

Sorting solution.
* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

23



Closest pair of points: first attempt

Sorting solution.

* Sort by x-coordinate and consider nearby points.
* Sort by y-coordinate and consider nearby points.

24



Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

25



Closest pair of points: second attempt

Divide. Subdivide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

26



Closest pair of points: divide-and-conquer algorithm

Divide: draw vertical line L so that n/2 points on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.

Return best of 3 solutions.

AN

seems like O(N?2)

27



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < é.

* Observation: only need to consider points within § of line L.

28



How to find closest pair with one point in each side?

Find closest pair with one point in each side, assuming that distance < é.
* Observation: only need to consider points within § of line L.
e Sort points in 28-strip by their y-coordinate.
* Only check distances of those within 11 positions in sorted list!

\whyll?

)

29



How to find closest pair with one point in each side?

Def. Let s; be the point in the 2 d-strip, with the i smallest y-coordinate.

Claim. If li—jl = 12, then the distance .
between s; and s; is at least 0. @ «— |
Pf. o
* No two points lie in same !4 6-by-14 6 box. O P NI N e
« Two points at least 2 rows apart /20
have distance = 2 (14 ). = 2rows | ==mes """"" 7 """
029 o ol 140
v _____ o U
I I %X
> @ | @
Fact. Claim remains true if we replace 12 with7.  ----- Rl R R
(26)
(25)




Closest pair of points: divide-and-conquer algorithm

CLOSEST-PAIR (p1, p2, ..., Pn)

Compute separation line L such that half the points «—— O(nlogn)
are on each side of the line.

01 <— CLOSEST-PAIR (points in left half).
8, < CLOSEST-PAIR (points in right half). 21w/
O <~ min{0;,0d }.

Delete all points further than 0 from line L. «— On)

Sort remaining points by y-coordinate. «—— O(nlog n)

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these — O
distances is less than 0, update 0.

RETURN 0.

31



Closest pair of points: analysis

Theorem. The divide-and-conquer algorithm for finding the closest pair of
points in the plane can be implemented in O log? n) time.

(1) ifn=1
T(n) = T([n/2]) + T(|n/2]) + O(nlogn) otherwise

(x1-x2)2+O1-y2)°

Lower bound. In quadratic decision tree model, any algorithm
for closest pair (even in 1D) requires Q(n log n) quadratic tests.

32



Improved closest pair algorithm

Q. How to improve to O(nlogn)?
A. Yes. Don't sort points in strip from scratch each time.
* Each recursive returns two lists: all points sorted by x-coordinate,
and all points sorted by y-coordinate.
* Sort by merging two pre-sorted lists.

Theorem. [Shamos 1975] The divide-and-conquer algorithm for finding the
closest pair of points in the plane can be implemented in O(n log n) time.

y (1) itn=1
: I(n) = T([n/2]) + T(ln/2]) + O@) otherwise

Note. See SECTION 13.7 for a randomized O(n) time algorithm.

N\

not subject to lower bound

since it uses the floor function 33



‘ THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

CHAPTER 7

5. DIVIDE AND CONQUER

» randomized quicksort



Randomized quicksort

3-way partition array so that: the array A

* Pivot element p is in place. 7.6 12 3 11 8 9 1 4 10 2

« Smaller elements in left subarray L. i
* Equal elements in middle subarray A7,  the partitioned array A

* Larger elements in right subarray R. 3 01 4 2.6 7 12 11 8 9 10

L i M ! R

Recur in both left and right subarrays.

RANDOMIZED-QUICKSORT (4)

IF list A has zero or one element
RETURN.
Pick pivot p € A uniformly at random.

3-way partitioning
(L, M, R) <= PARTITION-3-WAY (A4, a;). <«——— can be done in-place
(using n—1 compares)
RANDOMIZED-QUICKSORT(L).

RANDOMIZED-QUICKSORT(R).

35



Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n logn).

Pf. Consider BST representation of partitioning elements.

the original array of elements A

7 6 12 3 1T 8 9 1 4 10 2 13 5

T

first partitioning element
first partitioning (chosen uniformly at random)

element in \

left subarray \

36



Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Pf. Consider BST representation of partitioning elements.
* An element is compared with only its ancestors and descendants.

3 and 6 are compared

first partitioning element (when 3 is partitioning element)

first partitioning (chosen uniformly at random)

element in \

left subarray \

37



Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Pf. Consider BST representation of partitioning elements.
* An element is compared with only its ancestors and descendants.

2 and 8 are not compared

first partitioning element (because 3 partitions them)

first partitioning (chosen uniformly at random)

element in \

left subarray \

38



Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Pf. Consider BST representation of partitioning elements.

* An element is compared with only its ancestors and descendants.
* Pr[a and g are compared 1=2 / |j-i+1].

Pr[2 and 8 compared] = 2/7
ML [PEUEINE i) & RIrmeils (com a[red if either g or 8]are </:hosen
first partitioning (chosen uniformly at random) P e bef P — 2
R \ as partition before 3, 4, 5, 6 or

left subarray \

39



Analysis of randomized quicksort

Proposition. The expected number of compares to quicksort an array
of n distinct elements is O(n log n).

Pf. Consider BST representation of partitioning elements.

* An element is compared with only its ancestors and descendants.
* Pr[a and g are compared 1=2 / |j-i+1].

N N 9 N N-—i+1 1
« Expected number of compares = _f = 9 -
DD D SO DID DR
1=1 j=i+1 i=1 =2
/ <oyl
all pairs i and j - Z ;
j=1
N
~ 2N — dx
rz=1 T
= 2NInN

Remark. Number of compares only decreases if equal elements.

40



v 5. DIVIDE AND CONQUER

CHARLES E. LEISERSON

RONALD L. RIVEST

A CLIFFORD STEIN
) =2

» median and selection

CHAPTER 9



Median and selection problems

Selection. Given n elements from a totally ordered universe, find k" smallest.
* Minimum: k=1; maximum: k = n.

Median: k=|(n+1)/2].

O(n) compares for min or max.

O(n log n) compares by sorting.

O(n log k) compares with a binary heap.

Applications. Order statistics; find the "top k"; bottleneck paths, ...

Q. Can we do it with O(n) compares?
A. Yes! Selection is easier than sorting.

42



Quickselect

3-way partition array so that:
* Pivot element p is in place.
* Smaller elements in left subarray L.
* Equal elements in middle subarray M.
* Larger elements in right subarray R.

Recur in one subarray—the one containing the i smallest element.

QUICK-SELECT (4, k)

Pick pivot p € 4 uniformly at random. 3-way partitioning

can be done in-place
(L, M, R) <= PARTITION-3-WAY (A4, p). <—— (using n-1 compares)

IF k < |L| RETURN QUICK-SELECT (L, k).
ELSEIF k > |L|+|M| RETURN QUICK-SELECT (R, k— |L|—|M])

ELSE RETURN p.

43



Quickselect analysis

Intuition. Split candy bar uniformly = expected size of larger piece is 3.

T(n) < T(%4n) +n = T(n) < 4n

Def. T(n, k) = expected # compares to select £h smallest in an array of size < n.
Def. T(n) = maxk I(n, k).

Proposition. T(n) < 4n.
Pf. [by strong induction on n] can assume we always recur on largest subarray
since T(n) is monotonic and

 Assume true for 1,2,...,n—1. we are trying to get an upper bound
* T(n) satisfies the following recurrence: /

Tn) <=n +2/n[ Tn/2)+...+Tn-3)+Tn-2)+T(n—-1) ]

<n+2/n[4n/2\+...+4n-3)+4n-2)+4(n-1)]

n + 4 (3/4n)
4n. =

tiny cheat: sum should start at 7(|n/2 )

44



Selection in worst case linear time

Goal. Find pivot element p that divides list of n elements into two pieces so
that each piece is guaranteed to have < 7/10 n elements.

Q. How to find approximate median in linear time?
A. Recursively compute median of sample of < 2/10 n elements.

. O(1) ifn=1
() = T(7/10n) + T (2/10 n) + O(n) otherwise

\

two subproblems
of different sizes!

45



Choosing the pivot element

» Divide n elements into [n/5] groups of 5 elements each (plus extra).

HOBHO®OH®®®®
OROEOOE®O®
QOO OEHO®®®
WDOOOH®®®® @ @
EOROHOOOE®O

N =54



Choosing the pivot element

» Divide n elements into [n/5] groups of 5 elements each (plus extra).

* Find median of each group (except extra).

medians

47



Choosing the pivot element

Find median of each group (except extra).

Find median of |n /5] medians recursively.

Use median-of-medians as pivot element.

medians

median Of /
medians @ @ e

Divide n elements into [n /5] groups of 5 elements each (plus extra).

48



Median-of-medians selection algorithm

MOM-SELECT (A, k)

n<IAlI

IF n< 50 RETURN k* smallest of element of A via mergesort.

Group A into |n / 5] groups of 5 elements each (plus extra).
B < median of each group of 5.

p <= MOM-SELECT(B, [n/ 10]) «—— median of medians

49



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.

median of

e e @ 0 @
@0O00OO O
0
&)

0 00
POO0OOOHOOO
©OO00OOGOO

N =54

)
e

R



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast ||n/5]/2]=|n/10] medians < p.

median of

el X X X K N XN - &)

@0O0O0OOOOOG
0 &
&)

@0 0
POO0OO0HOG
©OO00OOGOO

N =54




Analysis of median-of-medians selection algorithm

* At least half of 5-element medians < p.
* Atleast ||n/5]/2]=|n/10] medians < p.
* Atleast3|n/10] elements < p.

median of
medians p

52



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.

median of

e @ @ @
0000000 OOO®
e 00 0
PO0OO0O0OPOOOOHOO

&

©OO000OOGOO

54



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.
* Symmetrically, at least |n/10] medians = p.

median of

medians p @

54



Analysis of median-of-medians selection algorithm

* At least half of 5-element medians = p.
* Symmetrically, at least |n/10] medians = p.
* Atleast3|[n/10] elements = p.

median of
medians p

55



Median-of-medians selection algorithm recurrence

Median-of-medians selection algorithm recurrence.
« Select called recursively with |n /5] elements to compute MOM p.
* Atleast3|n/10] elements < p.
At least 3 |n/10] elements = p.
» Select called recursively with at most n —3 |n/ 10| elements.

Def. C(n) = max # compares on an array of » elements.

C(n) =C(|n/5)+C (n=3|n/10]) + Wn

median of recursive computing median of 5
medians select (6 compares per group)
partitioning
(n compares)

Now, solve recurrence.
* Assume n is both a power of 5 and a power of 10?
* Assume C(n) is monotone nondecreasing?

56



Median-of-medians selection algorithm recurrence

Analysis of selection algorithm recurrence.

* T(n) = max # compares on an array of < »n elements.
* T(n) is monotone, but C(n) is not!

6n if n <50

T(n) = {T([n/ﬂ) + T(n-3|n/10]) + W n otherwise

Claim. T(n) < 44n.
* Base case: T(n) < 6n for n < 50 (mergesort).

* Inductive hypothesis: assume true for 1,2, ....,n—1.
* Induction step: for n > 50, we have:

T(n) =< T(n/5]) + Tn-3|n/10])+ 11/5n
<44 (n/5) +44m-3|n/10))+ 11/5n

<44 (/5 +44n-4n/4)+ 11/5n «—— for n=50, 3|n/10| = n/4
=44 n. =

57



Lineartime selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a compare-
based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. gpecifically, no more than

5J60§ n comparisons are ever required. This bound is improved for

Theory.
* Optimized version of BFPRT: < 54305 n compares.
* Best known upper bound [Dor-Zwick 1995]: < 2.95n compares.
* Best known lower bound [Dor-Zwick 1999]: = (2 + €) n compares.

58



Lineartime selection postmortem

Proposition. [Blum-Floyd-Pratt-Rivest-Tarjan 1973] There exists a compare-
based selection algorithm whose worst-case running time is O(n).

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. gpecifically, no more than

5J60§ n comparisons are ever required. This bound is improved for

Practice. Constant and overhead (currently) too large to be useful.

Open. Practical selection algorithm whose worst-case running time is O(n).

59



