
Performance Summary

Stable Matching Problem: The algorithm is O(N2) where N is the number 
of men and women.

Interval Scheduling: O(Nlog(N)) performance, where N is the number of 
intervals input.  The work of the algorithm is dominated by sorting 
intervals by increasing finish time.

Scheduling All Intervals: The N intervals are sorted by start time 
O(Nlog(N)), and the classrooms are kept in a heap that gives access to 
the classroom with the earliest finish time on its latest scheduled 
interval.  The algorithm puts the next interval into the element at 
the top of the heap, or into a new element.  The element receiving the 
next interval is sifted up or down to its correct position in the 
heap.  The total amount of work sifting is also O(Nlog(N)).

Scheduling to Minimize Lateness: The work required is dominated by the 
sort of the N jobs into increasing deadline order - so O(Nlog(N)) 
performance.

Dijkstra's Algorithm: The 'simple' version of the algorithm (which 
does not use a heap) is O(N2) where N is the number of nodes in the 
graph.  The version that uses a heap is O(Mlog(N)) where M is the 
number of edges, and N in the number of nodes.

Kruskal's Algorithm: Sorting M edges of an N-node graph is O(Mlog(N)).  
The amount of work for 2M finds and N-1 merges need not be more than 
O(Mlog(N)).

Prim's Algorithm: The 'simple' version is O(N2) where N is the number 
of nodes in the graph.  The variant that uses a heap is O(Mlog(N)) 
where M is the number of edges.

Disjoint Sets: If the initial number of sets is N and merges are done 
by 'pointing' a lower height tree at a greater height tree, then M 
finds and N unions would be done in O(Mlog(N)) time.  If path 
compression is also used, then the amount of work is virtually O(M+N).


