
The Logic of Kanji Lookup
in a Japanese↔English
Hyperdictionary
Harvey Abramson1, Subhash Bhalla, Kiel
Christianson, James Goodwin, Janet Good-
win2, John Sarraille3 & Lothar Schmitt2

1 Unisys Corp., G 140-9, 2476 Swedesford Road,
Paoli, PA 19301, USA
2 University of Aizu, Aizu Wakamatsu 96580, Ja-
pan
3California State University, Stanislaus, Turlock,
California 95381, USA

KEYWORDS: computational lexicography; hyper-
dictionary; language study

E-MAIL : harvey@tr.unisys.com
{bhalla, kiel, jamesg,
janetg}@uaizu.ac.jp
john@ishi.csustan.edu

FAX NUMBER: +81-242-37-2735 2

PHONE NUMBER: +81-242-37-2713 2

Extended abstract

1 Kanji and traditional kanji lookup
methods
In another paper submitted to this conference
[Abramson et al, 1995] we discuss the general
notion of “hyperdictionary”, and in particular, a
Japanese ↔English multimedia hyperdictionary
based on modern large memory technology such
as CD-ROMs or magneto-optical (MO) disks. By
hyperdictionary we mean a relational and deduc-
tive database containing the words of a language
or languages, together with an open-ended set of
access and display methods so as to present at least
their orthography, pronunciation, signification,
part of speech, and use, their history, synonyms,
homonyms, antonyms, derivation, relationships to
one another, and any other aspect of the words
which may be necessary for reference, teaching or
study purposes. Additional information about the
language or languages, including grammar, mor-
phology, semantics, pragmatics, machine tracta-
ble representations, etc., as well as relevant
information concerning geography, names, litera-
ture, society, culture, history and so on, is not
excluded from the database. In this paper we con-
centrate on one aspect of the Japanese↔English
hyperdictionary project, generalized kanji (Chi-
nese character) lookup. We shall use some simple
logic programming notation to describe the meth-
ods but even readers not familiar with Prolog or

logic programming notation should be able to
follow the discussion without trouble.
A student who is learning to read Japanese re-
quires not only the familiar bilingual dictionaries,
but also a character dictionary which gives the
various pronunciation and definitions in English
of each character, as well as pronunciations and
definitions in English of compounds, words which
are written with two or more characters. Charac-
ters in such a dictionary are classically arranged
according to a system of 214 radicals or kanji
components which divide the whole set of charac-
ters into subsets which are more or less semanti-
cally related. The traditional radical system is a
formalization of the practice of creating characters
from two simpler ones, one corresponding to a
semantic notion, and one to a word that “rhymed”
(so to speak) with the word being represented.

 can mean “word” or “language” or “speak”
and is one of the 214 radicals. Characters with this
radical usually have some connection with speak-
ing, words, or language use. Some of the charac-
ters which have this radical as a constituent,
usually on the left side, but possibly on the bottom,
are listed here:

– word, phrase, speech, statement

– plan, scheme, trick, meter, gauge

– correct, decide

– obituary, report of a death

– account, narrative, history

– Japanese reading of a character, lesson, regulation

– praise, honor, glory

– commandment, admonition

– foretelling, presage, omen

– convey, assign, deed, bequeath, postpone

– praise, title or brief inscription on a picture

Many characters are composed of constituents
each of which, or many of which, as far as the
learner knows, might be the radical of the charac-
ter. , the character for kun, the Japanese pro-
nunciation of characters (as opposed to on, the
pronunciation derived from Chinese), is com-
posed of the “word” element just mentioned
on the left, and , the element for “river”, on the
right. Both of these elements are radicals in the
system, but which is the radical of the character?
There are methods or algorithms for deciding the
radical of a character in terms of the structure of a
kanji when there are several constituents to the
character (e.g., prefer left over right, so in the kanji
for kun the radical must be the “speaking” con-
stituent). Radicals are ordered according to the
number of strokes needed to write them and there
is a traditional ordering of radicals with the same
number of strokes. In the total ordering of charac-
ters in such a dictionary, there is an entry for each
radical followed in some order (e.g., stroke count)

7

by entries for characters containing that radical.
Clearly, character dictionaries implemented as
books require a linearization of the set of all char-
acters and the notion of “radical of a character”
coupled with associated stroke counts of the radi-
cals and of the characters serve this purpose. Hy-
perdictionaries, essentially multilinear, do not
require such an ordering of the characters to facili-
tate lookup. Rather, any identifiable component of
a character may serve as a hyperindex to that
character, generalizing the method of looking up
a character. The next section deals with this topic.

2 The logic of kanji structure and
generalized kanji lookup
It is obvious that the number of characters in the
Japanese writing system is several orders of mag-
nitude greater than the size of alphabets for most
other languages. Although there is an official set
of about 2,000 characters for everyday use, the
number of characters actually in use depending on
educational level, is anywhere from 5,000 to
20,000, and historically over 45,000 characters
have been used. A recently published dictionary1,
for example, lists 21,084 characters. In order to
represent these characters there are several two
byte coding schemes. Most implementations of
Prolog limit themselves to a one byte encoding
scheme and are implicitly tailored to applications
with the familiar Roman alphabet. This means that
if kanji are to be used either as data or within
programs, they must occur as quoted atoms, e.g.,

 with the underlying representation as

name (, [138, 191, 142, 154]).

Here the four integers in the list represent the four
bytes needed to encode the two characters in the
“Shift JIS” coding scheme used in Macintosh sys-
tems2 .
As mentioned above, characters are traditionally
ordered according to a scheme which classifies
characters according to their radicals, a constituent
of the character which usually carries some mini-
mal semantic information. We can represent a
character with the ternary predicate kanji where
the first argument is the character, the second is its
radical, and the third is a structural representation
of the constituents of the character. (In the actual
hyperdictionary application, there will be addi-
tional places for other information about the char-
acter, pronunciation, meaning, stroke number,
calligraphic details, etc. Here we just want to
demonstrate a more general character lookup
method.)

This describes the character for “temple”, showing

its traditional radical, and an indication of its struc-
ture consisting of a top and bottom part. A few
other structure indications are “lr” for left and right
parts, “enc” for a part of the character which
encloses another part as in:

There are several other structural descriptions
which are not shown.

The components of the structural description may
be characters, or a structural description of some-
thing which does not exist as an independent char-
acter as in:

The right hand constiuent of the character consists
of a top and bottom arrangement of the characters
for “above” and “below” which is not an inde-
pendent character. The specification of “in” for
such a case is:

We have adapted a method originally given in
[Dürst,1993] for representing characters graphi-
cally rather than by their pronunciation or by
mnemonics (e.g., “ji” or “tera” or “temple” for

). Dürst introduced this kind of representation
largely for applications in font design, but it is very
convenient in our hyperdictionary application.3
There are some problems in representing charac-
ters this way in that certain radicals may not al-
ways appear in the particular encoding scheme
used. For example, the radical in

is a variant form of the character (meaning
hand) which itself does not appear as an inde-
pendent character in the official scheme. This is
sometimes solved by using a range of the two byte
scheme which is undefined to represent characters
(known as gaiji) which are needed in some par-
ticular application. Special action is required to
make the characters printable.
In addition to the specification of “kanji” we also
define what might be called a graph representation
of the character and its constituents. The nodes of
the graph are characters (including variant forms
of characters which appear as radicals), and there
is an arc connecting one node to another if one
character is a direct constituent of the other. Thus

8

corresponding to:

we also have:

The specification of “in” can be automatically
derived from the structural definition in “kanji”.
Students of Japanese as a second language often
find it hard at first to identify the radical of a
character. However they often see patterns in kanji
or parts of kanji other than the radical which could
be used for character lookup if another part of the
character had been chosen as the basis of the linear
ordering of characters. For example, each of the
following characters has as a constituent,
and indirectly the constituents and .

The specification of the graph for these characters
is:

We define a predicate “in_deep” which relates
constituents and characters which are connected
by one or more “in” links4:

in_deep(X,Y) : in(X,Y).

in_deep(X,Y) : in(Z,Y),Z=..[_|List],member(X,List).

in_deep(X,Z) : in(X,Y),in_deep(Y,Z).

The second clause deals with artificial constructs
such as

We then define “is_part_of” which finds the char-
acters which contain a given character directly or
indirectly:

is_part_of (Kanji,PartOfList) :-
 setof (KanjiPlus,in_deep(Kanji,
 KanjiPlus),PartOfList).

And we define a predicate “components_of”
which lists all the direct and indirect constituents
of a character:

components_of(Kanji,ComponentsList) :-
 setof(KanjiMinus,in_deep(KanjiMin
us,
 Kanji),ComponentsList).

Thus:

is_part_of(, X).

yields

and
components_of(, X).

yields

while
components_of(, X)

yields

Although there are some specialized5 Japanese
dictionaries which do group together characters
with similar non-radical constitutents (for exam-
ple, characters containing), this kind of in-
formation about character structure is generally
not accessible in traditional dictionaries other than
by a tedious linear search through the book. Fur-
thermore, this sort of information is not available
in standard Japanese word processors. It must be
said, however, that students of Japanese as a sec-
ond language and particularly those who wish to
learn to read tend to ask questions which native
speakers do not.

9

A complete decomposition of a character into all
its constituents is not necessary. There are some
characters where the only easily identifiable part
may be its radical. We are prototyping a Japanese-
English CD-ROM character dictionary with about
6,000 characters. Part of the project will involve
making a very user-friendly interface since we do
not expect or want all users to be Prolog progra-
mers.
We have been using LPA MacProlog 32 [Johns,
92] running on Macintosh Quadras and Power-
Books, and also SICStus Prolog 2.1 [Andersson et
al, 1993] running on various Sparc workstations
under Unix. Porting to other Prologs and platforms
should not be a problem.
I am indebted to one of the reviewers for suggest-
ing that the metod introduced here may be ported
to other logographic systems. For instance, in
cuneiform, the reviewer comments, very similar
problems arise, heightened by the unfortunate cir-
cumstance that many characters in actual “docu-
ments”, i.e., clay tablets, are incomplete in that
there are broken edges, smudges, etc., so that only
subparts of a character can be seen. Having a
retrieval system that is able to come up with
ranked guesses would be highly useful in this
field. There might also be applications in dealing
with other kinds of fragmentary documents.

References
Abramson, H., Bhalla, S., Christianson, K., Good-

win, J., Goodwin, J., Sarraille, J., Schmitt, L.
(1995) Towards CD-ROM based Japane-
se↔English Dictionaries: Justification and
Some Implemenation Issues. Submitted to
Joint International Conference ALLC-ACH
’96.

Andersson, J. et al (1993), SICStus Prolog User’s
Manual Version 2.1 #8, SICS Technical Re-
port T93:01, SICS, Kista, Sweden.

Dürst, M.J. (1993) Coordinate-independent font
description using Kanji as an example, Elec-
tronic Publishing vol. 6, no. 3, pp. 133–143,
Sept. 1993.

Johns, N. MacPROLOG (1992) Reference Man-
ual version 4.1, Logic Programming Associ-
ates Ltd.

Notes
1Shindaijiten () published by Kodansha.

2On the other hand, SICStus Prolog does permit
use of the Extended Unix Code (EUC) scheme
which permits kanji to be displayed without the
use of quotes: .

3 Dürst’s original representation should prove use-
ful in supplying calligraphic instruction as to the
order in which the pieces of the character should

be written.

4 “in_deep” is the transitive closure of “in”.

5 Such as Kanji no yomikata () pub-
lished by Kadokawa Shoten.

10

