
BY: DAEHEE KIM, STEPHANIE GAMBOA, VANESSA HERNANDEZ, MARLEN

MARTINEZ-LOPEZ, SCOTT J. HEBBRING, JOHN MAYER & JAIME FOX

Medical Big Data Analysis
System to Discover
Associations between Genetic
Variants and Diseases

Table of

Contents

 Background

 Motivations

 Dataset

 Architecture

 System Architecture

 Software Architecture

 Control flow

 Development

 New Search, Narrow Search

 Evaluation

 Setup, Performance, Overhead

 Related Work

 Future work & Conclusion

Background

 Health Record Data

 Used to record data on patients

 Biological measurements

 Disease Diagnoses

 Medical procedures

 Genetic Data

 Retrieved from DNA in blood samples

Background- cont’d

 Marshfield Clinic Research Institute (MCRI)

 Genome-Wide Association Studies (GWASs)

 Find genetic variants for certain diseases

 Phenotype-to-genotype approach

 Phenome-Wide Association Studies (PheWASs)

 Explore multiple diseases relevant to genetic variant

 Genotype-to-phenotype approach

 Electronic Health Records (EHRs) and DNA genotype are the main

resources used to discover individual differences

 We designed and implemented a Medical Big Data analysis system

that retrieves results from a GWAS-by-PheWAS dataset

Motivations

 Our motivation

 Longer times to search results; We made this

system

 Goal 1: Finds the link between genetic variants

and human diseases

 Aim to help medical professionals more with

data analysis with their patients

 Goal 2: Implement a web query system that

finds the links between human disease and

genetic variants with PheWAS and GWAS

 GWAS study scans markers across DNA or

genomes of many people to find variations

associated with a disease

 PheWAS study explores multiple diseases

relevant to a genetic variant

Dataset

 Data of biobank in Marshfield Clinic
Research Institute (MCRI)

 Consists of genotype DNA and EHR of

20,000 patients

 Age range 18 to 98.5

 57.2%

 PheWAS dataset searchable by RS ID or

genetic position of SNP

 GWAS dataset searchable by ICD-9

disease code or description

GWAS

PheWAS

Example

22,29854579,G,A,8613,0.19234,0.

0065506,-,0.935493,dx903,

Type 1 (Juvenile Type) Diabetes

Mellitus With Ketoacidosis

Uncontrolled, 250.13

GWAS

Example

22,17265124,17265124,A,C,exoni

c,XKR3,NA nonsynonymous

SNV,XKR3:NM_175878:exon4:c:T7

65G:p.F255L,0.694489,0.6282,

rs5748623,

1,T,0.0,B,0.0,B,0.001,N,1.000,P,-

1.1,N,NA,,

System Architecture

 Each node runs on

 Dell PowerEdge R710

 2U rack sever (144GB)

 2 Intel Xeon 5660

 Each node has

 2 TB SSD

 8 TB for Spark cluster

 Ubuntu 18.04

 Standalone cluster manager

Software Architecture

 Web Query System architecture

 Front-end user interface

 R Shiny

 Back-end server

 GlusterFS

 Spark

 MongoDB

 Java daemon

Control flow

 A user would type a request to find:

 Diseases relevant to genomic data

 Genomic data relevant to diseases

 Requests are sent to master through sparkR

 Partial results are sent to Shiny, the keys are

saved temporarily in MongoDB and sends

emails

New Search: Front-end

 New Search is used to find diseases

 Inputs consist of RS# (location of the

genome) and end positions

 Inputs to find genotypes consist of disease

codes or description

 UI consists of shiny widgets

 selectInput (dropdown button)

 textInput

 actionButton

 dataTable (showing results in table format)

New search user interface

New Search: Front-end - cont’d

 Algorithm 1

 Processes new search requests to find diseases

 Given inputs (chromosomes, list of RS ids and

end position) PheWAS and GWAS data for
the chromosomes are loaded from CSV files

New Search: Back-end

 Requests that take a long time are processed in the
background after partial results are returned to front-end UI.

 Spark cluster

 The analysis application retrieves the list of key pairs of a

chromosome

 An end position from Mongo DB through Mongo DB Java driver

 Processes the analysis in worker nodes

 The data frame returned from workers are converted and

saved into Mongo DB for narrow search later

 The analysis application sends a notification email every time

each job is processed

Narrow Search

 Enables a user to find exact results by reusing search
results saved in Mongo DB

 Shiny application retrieves results from Mongo DB
through mongolite R package

 Retrieve partial documents

 First, prev, next and last

 First and last buttons load the first and last block in a
collection

 “plot” button used to visualize table formats using
Manhattan plot

 To draw PheWAS data, we use scatter plot using
plotly R graphing library which makes interactive
graphs

Narrow search user interface

Evaluation Set Up

 SparkR (front-end), Spark-submit (back-end)

 Measured running time of:

 Front-end & back-end operations

 Averaged 5 times running the same request using ‘sar’ command

 Each executor: 2 CPU cores, 16 GB

 Varying the number of executors to 4, 8,16 and 32

 Equally distributed to four worker nodes

 (e.g., 32 executors, each worker node runs 8 executors with 16 cores

and 128 GB, resulting in 64 CPU cores and 512 GB in total for processing

a user request)

Performance

 Running time for disease / genome data

 Running time becomes faster with more

executors on parallel processing

 Running time of front-end is much less than

back-end processing

 Separating workloads between front-end and

back-end is configurable

 For all chromosomes, long time for front-end

operation

 Running time with 16 and 32 executors is similar,

indicating the existence of upper bounds

Search disease

Search genome

Chromosome 22 All chromosomes

Chromosome 22 All chromosomes

Overhead

 Figures show additional CPU/Memory usage

 CPU overhead

 CPU per node increases with more executors

 Workload is balanced to four nodes

 Memory overhead

 Memory usage increases with more executors

 Underutilized CPU/Memory

 For genome, CPU used 40 % out of 66% allocated

 Memory used 25 % out of 90% allocated

 Dynamically changing # of cores and memory

size in an executor can increase performance

while utilizing resources at maximum

CPU usage

Memory usage

Search disease Search genome

Search disease Search genome

Related Work

 Sedlmayr et al

 Using Spark cluster along with SparkR increase better performance over message

passing interface

 Hong et al

 Shiny R package

 Developing interactive Web applications in R

 Graphical and interactive analysis

 Criscuolo & Angelini

 StructuRly a shiny app: to produce interactive plots for population genetic analysis

Future Work & Conclusion

 Medical big data analysis system is a prototype

 Check the application design and system architecture

 To handle more data

 Large scale Spark cluster

 More worker nodes

 MCRI biobank: 20 petabytes

 Future

 Dynamic resource allocation

 A hybrid system

Thank you

Daehee Kim dkim10@csustan.edu

Stephanie Gamboa sgamoa@csustan.edu

Vanessa Hernandez vhernandez27@csustan.edu

Marlen Martinez-Lopez mmartinezlopez@csustan.edu

Scott J Hebbring hebbring.scott@marshfieldresearch.org

John Mayer mayer.john@marshfieldresearch.org

Jaime Fox jaime.fox@preventiongenetics.com

