
BY: DAEHEE KIM, STEPHANIE GAMBOA, VANESSA HERNANDEZ, MARLEN

MARTINEZ-LOPEZ, SCOTT J. HEBBRING, JOHN MAYER & JAIME FOX

Medical Big Data Analysis
System to Discover
Associations between Genetic
Variants and Diseases

Table of

Contents

 Background

 Motivations

 Dataset

 Architecture

 System Architecture

 Software Architecture

 Control flow

 Development

 New Search, Narrow Search

 Evaluation

 Setup, Performance, Overhead

 Related Work

 Future work & Conclusion

Background

 Health Record Data

 Used to record data on patients

 Biological measurements

 Disease Diagnoses

 Medical procedures

 Genetic Data

 Retrieved from DNA in blood samples

Background- cont’d

 Marshfield Clinic Research Institute (MCRI)

 Genome-Wide Association Studies (GWASs)

 Find genetic variants for certain diseases

 Phenotype-to-genotype approach

 Phenome-Wide Association Studies (PheWASs)

 Explore multiple diseases relevant to genetic variant

 Genotype-to-phenotype approach

 Electronic Health Records (EHRs) and DNA genotype are the main

resources used to discover individual differences

 We designed and implemented a Medical Big Data analysis system

that retrieves results from a GWAS-by-PheWAS dataset

Motivations

 Our motivation

 Longer times to search results; We made this

system

 Goal 1: Finds the link between genetic variants

and human diseases

 Aim to help medical professionals more with

data analysis with their patients

 Goal 2: Implement a web query system that

finds the links between human disease and

genetic variants with PheWAS and GWAS

 GWAS study scans markers across DNA or

genomes of many people to find variations

associated with a disease

 PheWAS study explores multiple diseases

relevant to a genetic variant

Dataset

 Data of biobank in Marshfield Clinic
Research Institute (MCRI)

 Consists of genotype DNA and EHR of

20,000 patients

 Age range 18 to 98.5

 57.2%

 PheWAS dataset searchable by RS ID or

genetic position of SNP

 GWAS dataset searchable by ICD-9

disease code or description

GWAS

PheWAS

Example

22,29854579,G,A,8613,0.19234,0.

0065506,-,0.935493,dx903,

Type 1 (Juvenile Type) Diabetes

Mellitus With Ketoacidosis

Uncontrolled, 250.13

GWAS

Example

22,17265124,17265124,A,C,exoni

c,XKR3,NA nonsynonymous

SNV,XKR3:NM_175878:exon4:c:T7

65G:p.F255L,0.694489,0.6282,

rs5748623,

1,T,0.0,B,0.0,B,0.001,N,1.000,P,-

1.1,N,NA,,

System Architecture

 Each node runs on

 Dell PowerEdge R710

 2U rack sever (144GB)

 2 Intel Xeon 5660

 Each node has

 2 TB SSD

 8 TB for Spark cluster

 Ubuntu 18.04

 Standalone cluster manager

Software Architecture

 Web Query System architecture

 Front-end user interface

 R Shiny

 Back-end server

 GlusterFS

 Spark

 MongoDB

 Java daemon

Control flow

 A user would type a request to find:

 Diseases relevant to genomic data

 Genomic data relevant to diseases

 Requests are sent to master through sparkR

 Partial results are sent to Shiny, the keys are

saved temporarily in MongoDB and sends

emails

New Search: Front-end

 New Search is used to find diseases

 Inputs consist of RS# (location of the

genome) and end positions

 Inputs to find genotypes consist of disease

codes or description

 UI consists of shiny widgets

 selectInput (dropdown button)

 textInput

 actionButton

 dataTable (showing results in table format)

New search user interface

New Search: Front-end - cont’d

 Algorithm 1

 Processes new search requests to find diseases

 Given inputs (chromosomes, list of RS ids and

end position) PheWAS and GWAS data for
the chromosomes are loaded from CSV files

New Search: Back-end

 Requests that take a long time are processed in the
background after partial results are returned to front-end UI.

 Spark cluster

 The analysis application retrieves the list of key pairs of a

chromosome

 An end position from Mongo DB through Mongo DB Java driver

 Processes the analysis in worker nodes

 The data frame returned from workers are converted and

saved into Mongo DB for narrow search later

 The analysis application sends a notification email every time

each job is processed

Narrow Search

 Enables a user to find exact results by reusing search
results saved in Mongo DB

 Shiny application retrieves results from Mongo DB
through mongolite R package

 Retrieve partial documents

 First, prev, next and last

 First and last buttons load the first and last block in a
collection

 “plot” button used to visualize table formats using
Manhattan plot

 To draw PheWAS data, we use scatter plot using
plotly R graphing library which makes interactive
graphs

Narrow search user interface

Evaluation Set Up

 SparkR (front-end), Spark-submit (back-end)

 Measured running time of:

 Front-end & back-end operations

 Averaged 5 times running the same request using ‘sar’ command

 Each executor: 2 CPU cores, 16 GB

 Varying the number of executors to 4, 8,16 and 32

 Equally distributed to four worker nodes

 (e.g., 32 executors, each worker node runs 8 executors with 16 cores

and 128 GB, resulting in 64 CPU cores and 512 GB in total for processing

a user request)

Performance

 Running time for disease / genome data

 Running time becomes faster with more

executors on parallel processing

 Running time of front-end is much less than

back-end processing

 Separating workloads between front-end and

back-end is configurable

 For all chromosomes, long time for front-end

operation

 Running time with 16 and 32 executors is similar,

indicating the existence of upper bounds

Search disease

Search genome

Chromosome 22 All chromosomes

Chromosome 22 All chromosomes

Overhead

 Figures show additional CPU/Memory usage

 CPU overhead

 CPU per node increases with more executors

 Workload is balanced to four nodes

 Memory overhead

 Memory usage increases with more executors

 Underutilized CPU/Memory

 For genome, CPU used 40 % out of 66% allocated

 Memory used 25 % out of 90% allocated

 Dynamically changing # of cores and memory

size in an executor can increase performance

while utilizing resources at maximum

CPU usage

Memory usage

Search disease Search genome

Search disease Search genome

Related Work

 Sedlmayr et al

 Using Spark cluster along with SparkR increase better performance over message

passing interface

 Hong et al

 Shiny R package

 Developing interactive Web applications in R

 Graphical and interactive analysis

 Criscuolo & Angelini

 StructuRly a shiny app: to produce interactive plots for population genetic analysis

Future Work & Conclusion

 Medical big data analysis system is a prototype

 Check the application design and system architecture

 To handle more data

 Large scale Spark cluster

 More worker nodes

 MCRI biobank: 20 petabytes

 Future

 Dynamic resource allocation

 A hybrid system

Thank you

Daehee Kim dkim10@csustan.edu

Stephanie Gamboa sgamoa@csustan.edu

Vanessa Hernandez vhernandez27@csustan.edu

Marlen Martinez-Lopez mmartinezlopez@csustan.edu

Scott J Hebbring hebbring.scott@marshfieldresearch.org

John Mayer mayer.john@marshfieldresearch.org

Jaime Fox jaime.fox@preventiongenetics.com

