





## Medical Big Data Analysis System to Discover Associations between Genetic Variants and Diseases

BY: DAEHEE KIM, STEPHANIE GAMBOA, VANESSA HERNANDEZ, **MARLEN MARTINEZ-LOPEZ**, SCOTT J. HEBBRING, JOHN MAYER & JAIME FOX

# Table of Contents

- Background
- Motivations
- Dataset
- Architecture
  - ► System Architecture
  - Software Architecture
  - ► Control flow
- Development
  - ▶ New Search, Narrow Search
- ► Evaluation
  - Setup, Performance, Overhead
- Related Work
- ► Future work & Conclusion

## Background

- Health Record Data
  - Used to record data on patients
  - Biological measurements
    - Disease Diagnoses
    - Medical procedures
- ► Genetic Data
  - Retrieved from DNA in blood samples



Name: Jane Doe Medical History #: 111111 DOB: 01/01/1950 Weight: 150 lbs Height: 5'5'' Address: 1000 N. Oak Street

**Diagnosis & Procedure** (ICD9 codes): 250 = Diabetes 493.1 = Intrinsic Asthma 474.00 = Chronic Tonsillitis 28.2 = Tonsillectomy

#### Prescriptions: Antibiotics Albuterol Metformin

## Background-cont'd

- Marshfield Clinic Research Institute (MCRI)
- Genome-Wide Association Studies (GWASs)
  - ► Find genetic variants for certain diseases
  - Phenotype-to-genotype approach
- Phenome-Wide Association Studies (PheWASs)
  - Explore multiple diseases relevant to genetic variant
  - Genotype-to-phenotype approach
- Electronic Health Records (EHRs) and DNA genotype are the main resources used to discover individual differences
- We designed and implemented a Medical Big Data analysis system that retrieves results from a GWAS-by-PheWAS dataset

## Motivations

- Our motivation
  - Longer times to search results; We made this system
- Goal 1: Finds the link between genetic variants and human diseases
  - Aim to help medical professionals more with data analysis with their patients
- Goal 2: Implement a web query system that finds the links between human disease and genetic variants with PheWAS and GWAS
  - GWAS study scans markers across DNA or genomes of many people to find variations associated with a disease
  - PheWAS study explores multiple diseases relevant to a genetic variant



## Dataset

- Data of biobank in Marshfield Clinic Research Institute (MCRI)
- Consists of genotype DNA and EHR of 20,000 patients
  - ► Age range 18 to 98.5
  - ▶ 57.2%
  - PheWAS dataset searchable by RS ID or genetic position of SNP
  - GWAS dataset searchable by ICD-9 disease code or description

| PheWAS<br>Example | <b>22,29854579</b> G,A,8613,0.19234,0.<br>0065506,-,0.935493,dx903,<br><b>Type 1 (Juvenile Type) Diabetes</b><br><b>Mellitus With Ketoacidosis</b><br><b>Uncontrolled</b> , <b>250.13</b>   |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GWAS<br>Example   | 22,17265124,17265124,A,C,exoni<br>c,XKR3,NA nonsynonymous<br>SNV,XKR3:NM_175878:exon4:c:T7<br>65G:p.F255L,0.694489,0.6282,<br>rs5748623,<br>1,T,0.0,B,0.0,B,0.001,N,1.000,P,-<br>1.1,N,NA,, |

## System Architecture

- Each node runs on
  - Dell PowerEdge R710
  - 2U rack sever (144GB)
  - ► 2 Intel Xeon 5660
- Each node has
  - ► 2 TB SSD
- ► 8 TB for Spark cluster
- ▶ Ubuntu 18.04
- Standalone cluster manager



### Software Architecture

- Web Query System architecture
  - ► Front-end user interface
    - ► R Shiny
  - Back-end server
    - ► GlusterFS
    - ► Spark
    - ► MongoDB
    - ► Java daemon



# Control flow

- A user would type a request to find:
  - Diseases relevant to genomic data
  - Genomic data relevant to diseases
- Requests are sent to master through sparkR
- Partial results are sent to Shiny, the keys are saved temporarily in MongoDB and sends emails



#### New Search: Front-end

- New Search is used to find diseases
  - Inputs consist of RS# (location of the genome) and end positions
  - Inputs to find genotypes consist of disease codes or description
- ► UI consists of shiny widgets
  - selectInput (dropdown button)
  - ► textInput
  - actionButton
  - dataTable (showing results in table format)



New search user interface

#### New Search: Front-end - cont'd

#### Algorithm 1

- Processes new search requests to find diseases
- Given inputs (chromosomes, list of RS ids and end position) PheWAS and GWAS data for the chromosomes are loaded from CSV files



#### New Search: Back-end

- Requests that take a long time are processed in the background after partial results are returned to front-end UI.
- ► Spark cluster
  - The analysis application retrieves the list of key pairs of a chromosome
  - An end position from Mongo DB through Mongo DB Java driver
    - Processes the analysis in worker nodes
- The data frame returned from workers are converted and saved into Mongo DB for narrow search later
- The analysis application sends a notification email every time each job is processed

#### Narrow Search

- Enables a user to find exact results by reusing search results saved in Mongo DB
- Shiny application retrieves results from Mongo DB through mongolite R package
- Retrieve partial documents
  - ▶ First, prev, next and last
  - First and last buttons load the first and last block in a collection
- "plot" button used to visualize table formats using Manhattan plot
- To draw PheWAS data, we use scatter plot using plotly R graphing library which makes interactive graphs



Narrow search user interface

## **Evaluation Set Up**

- SparkR (front-end), Spark-submit (back-end)
- Measured running time of:
  - Front-end & back-end operations
  - Averaged 5 times running the same request using 'sar' command
- ► Each executor: 2 CPU cores, 16 GB
- Varying the number of executors to 4, 8,16 and 32
- Equally distributed to four worker nodes
  - (e.g., 32 executors, each worker node runs 8 executors with 16 cores and 128 GB, resulting in 64 CPU cores and 512 GB in total for processing a user request)



## Performance

- Running time for disease / genome data
  - Running time becomes faster with more executors on parallel processing
  - Running time of front-end is much less than back-end processing
  - Separating workloads between front-end and back-end is configurable
  - For all chromosomes, long time for front-end operation
  - Running time with 16 and 32 executors is similar, indicating the existence of upper bounds





Search genome

## Overhead

- Figures show additional CPU/Memory usage
- CPU overhead
  - CPU per node increases with more executors
  - Workload is balanced to four nodes
- Memory overhead
  - Memory usage increases with more executors
- Underutilized CPU/Memory
  - ▶ For genome, CPU used 40 % out of 66% allocated
  - ▶ Memory used 25 % out of 90% allocated
  - Dynamically changing # of cores and memory size in an executor can increase performance while utilizing resources at maximum





Search disease



CPU usage





Search genome

Memory usage

## **Related Work**

- SedImayr et al
  - Using Spark cluster along with SparkR increase better performance over message passing interface
- Hong et al
  - Shiny R package
  - Developing interactive Web applications in R
  - Graphical and interactive analysis
- Criscuolo & Angelini
  - StructuRly a shiny app: to produce interactive plots for population genetic analysis

## Future Work & Conclusion

Medical big data analysis system is a prototype

- Check the application design and system architecture
- ► To handle more data
  - Large scale Spark cluster
  - More worker nodes
  - MCRI biobank: 20 petabytes
- ► Future
  - Dynamic resource allocation
  - A hybrid system

#### Thank you

Daehee Kim Stephanie Gamboa Vanessa Hernandez Marlen Martinez-Lopez Scott J Hebbring John Mayer Jaime Fox dkim10@csustan.edu sgamoa@csustan.edu vhernandez27@csustan.edu mmartinezlopez@csustan.edu hebbring.scott@marshfieldresearch.org mayer.john@marshfieldresearch.org jaime.fox@preventiongenetics.com