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Abstract—Electronic Health Records (EHRs) and genomic data
are fruitful resources to find associations between genetic variants
and human diseases. Medical researchers have used Phenome-
Wide Association Study (PheWAS) to find diseases relevant to
genomic variants, and Genome-Wide Association Study (GWAS)
to discover genomic variants related to specific diseases. In the
era of Big data, the quantity of disease and genomic data have
significantly increased, resulting in long processing and research
time for Big data analysis. We designed and implemented a
prototype of Medical Big Data Analysis System that finds the
links between genetic variants and human disease with PheWAS
and GWAS dataset of a population-based biobank in Marshfield
Clinic Institute. The system consists of front-end Web-based
graphic user interface using Shiny application, and back-end Big
data analysis servers using Apache Spark and Mongo database.
We evaluated the associations with selected variants and diseases
and present the performance and CPU/memory overhead of the
system while varying the number of executors in Spark cluster,
which provides readers with multiple factors for deploying
medical Big data analysis system.

Index Terms—Phenome Wide Association Study, PheWAS,
Genome Wide Association Study, GWAS, Medical Big Data
Analysis, Apache Spark, SparkR, R, Shiny, Mongo DB

I. INTRODUCTION

Big data has been used in health care for clinical de-
cision support, efficiency of health care professionals, and
patient care. In 2015, the White House launched the Precision
Medicine Initiative (PMI) [1] where National Institutes of
Health (NIH) awarded $55 million dollars to seven institutions
for building a diverse research cohort of 1 million individuals
including their health information, blood sample for DNA
sequencing, and access to electronic health records (EHRs).
The goal of the initiative was to effectively prevent and treat
illness based on an understanding of individual differences.

Electronic Health Records (EHRs) and DNA genotypes are
the main resources used to discover individual differences.
Regarding EHRs, doctors and health care providers acquire
patient information from test and results, medical procedures,
and disease diagnoses. The disease diagnoses are converted
to codes, International Classification of Diseases (ICD)-9 [2]
(e.g. diabetes: 250). Patient samples with DNA genotypes
can be used to explore individual traits and diseases. The
Human Genome Project [3] [4] discovered genome sequences

containing 3 billion base pairs of nucleotides. The differences
in sequence lead to genetic variants (hair color, eye color,
height) and human disease.

Genome-Wide Association Studies (GWASs) [5] were per-
formed to find genetic variants for certain diseases, which is
a phenotype-to-genotype approach. Phenome-Wide Associa-
tion Studies (PheWASs) were conducted to explore multiple
diseases relevant to a genetic variant, which is a genotype-to-
phenotype approach [6] [7] [8] [9] [10] [11].

Marshfield Clinic Research Institute (MCRI)1 located in
Marshfield, WI, is a medical research institute with a
population-based biobank, which is a human DNA repository
linked to an EHR. When genetic data has been collected, these
biobanks allow researchers to associate any one of millions
of genetic variants to any one of thousands of phenotypes.
To conduct these analysis, researchers often delegated data
to highly trained experts in statistics and/or informatics. For
example, researchers send a list of variants and/or phenotypes
to experts who often run programs manually using data ware-
house appliances, Cloud-based analysis, data management ap-
plications, and statistical packages. The experts return relevant
statistical outputs to the researcher for interpretation. However,
the vast quantity and diversity of disease and genome data,
in combination with manual processes, can result in long
turnaround times on the order of weeks or months.

To dramatically improve efficacy, we designed and imple-
mented Medical Big Data Analysis System that retrieves asso-
ciation results from a GWAS-by-PheWAS dataset derived from
extensive genomic and phenomic data in MCRI’s biobank. The
main goal of this system is that end users (medical researchers)
are able to quickly search association data without the time-
consuming processes described previously. The system uses
Shiny application [12] for front-end Web-based graphic user
interface and back-end Big data analysis servers using Apache
Spark and Mongo database.

Our contributions are as follows.

• To the best of our knowledge, this is the first bidirectional
approach combining PheWAS and GWAS automatically,

1https://www.marshfieldresearch.org/
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Fig. 1. EHR and Genetic Data

which is discussed compared to unidirectional previous
studies.

• We introduce a prototype of medical Big data analysis
system to explore associations between genetic variants
and human disease

• With evaluation results, we share multiple factors to be
considered for medical Big data analysis system.

The rest of the paper is organized as follows. We provide
background information for medical research with disease and
genetic data in Section II. We discuss design and implemen-
tation in Section III. We then present the performance and
overhead of the system in Section IV and related work in
Section V. We conclude in Section VI along with future work.

II. BACKGROUND

A. Health Record Data

Health care providers record data on patients. Those records
include biological measurements (e.g., blood pressure, tem-
perature, and weight), disease diagnoses, medical procedures
(surgeries), prescriptions, family history, and allergies. This
data is stored in the patient’s electronic health record (EHR)
as depicted in Fig. 1(a). International Classification of Diseases
(ICD) codes [2] describe common medical conditions and
procedures. The codes are organized in a hierarchal structure.
For example, with ICD-9 coding, 714.3 (Juvenile Chronic
Polyarthritis) is a disease under 714 (Rheumatoid arthritis)
disease code.

B. Genetic Data

Human DNA is distributed between 22 pairs of somatic
chromosome and 2 sex chromosomes. As shown in Fig-
ure 1(b), genetic data is retrieved from DNA in blood sample.
DNA is made up of 4 repeating nucleotide bases (A, T, C,
and G) which are responsible for all diversity of life. In the
Fig. 1(b), a nucleotide (A) of person2 with disease is different
from that (C) of person1. The mapping between the two
nucleotides (C/A) is called Single Nucleotide Polymorphism
(SNP) or variant that is denoted with a unique RS number, RS
ID (Reference SNP cluster ID).

C. Association Studies

Genome-Wide Association Study (GWAS) is the phenotype
to genotype approach whereas Phenome-Wide Association
Study (PheWAS) is a genotype-to-phenotype approach. Both
strategies attempt to find associations between SNPs (variants)
and disease where cases are individuals with a disease and
controls are individuals without the disease according to EHR
data. Through any one of a variety of statistical methods (e.g.,
chi-square, Fishers exact, logistic regression), a genetic variant
(SNP) can be associated with a disease. P-values are often
used to screen thousands to millions of association results to
identify meaningful results. Hundreds of published GWASs
are curated by GWAS Catalog [5] [13] and some PheWAS
results have been curated in the GWAS Catalogue.

III. DESIGN & IMPLEMENTATION

A. Dataset

The dataset for this paper is the summary data of biobank in
MCRI. The biobank has been used extensively for discovery
research including the electronic MEdical Records and GE-
nomics (eMERGE) network [7] and many other studies [8].
The dataset consists of genotyped DNA and EHR of 20,000
patients. The ages range from 18 to 98.5 years old, and the
median of ages is 48. 57.2% are female and 98% are white
Caucasian.

PheWAS and GWAS dataset contains CSV files of 22
chromosomes respectively. Table I displays column names,
examples, and description of columns in the datasets. The
PheWAS and GWAS datasets contain 191 and 21 million rows
respectively. PheWAS dataset is queryable according to RS
ID or genomic position of SNP. To search GWAS data, user
searches by ICD-9 [2] disease code and disease description.

B. System Architecture

Fig. 2 illustrates system architecture of medical Big data
analysis system that consists of front-end user interface and
back-end server. Front-end user interface is developed with
Shiny [12] on R to build up interactive Web UI. Back-
end server consists of GlusterFS [24] network file system,
Spark cluster for large-scale analytic data processing, Mongo
Database to save massive results returned from Spark cluster
for narrow search, and asynchronous Java daemon for process-
ing in the background. SparkR [25] delivers requests and data
between Shiny (front-end user interface) and Spark (back-end
server).

Each node runs on Dell PowerEdge R710, 2U rack server,
with 144 GB memory and 2 Intel Xeon 5660 processors each
of which has 2.80 GHz and 12 CPU cores. In total, Spark
cluster has 96 CPU cores and 576 GB memory. Each node has
two 1 TB SSDs, resulting in 8 TB storage for Spark cluster.
Ubuntu 18.04 is the operating system of each node. Four nodes
are connected through a gigabit network. We use standalone
cluster manager without using Mesos and Hadoop YARN.

A user types requests to find diseases relevant to genomic
data using RS id/end positions or to find genomic data relevant
to diseases using ICD-9 disease codes or description in Shiny



TABLE I
PHEWAS AND GWAS DATASET

Column names chrom, pos, ref wt, alt wt, n informative, af, stat, direction, pvalue, dx code, dx desc, dx
PheWAS Example 22,29854579,G,A,8613,0.19234,0.0065506,-,0.935493,dx903,Type I (Juvenile Type) Diabetes Mellitus With

Ketoacidosis Uncontrolled,250.13
chromosome number, ending location of the variant, base nucleotide, variant nucleotide, the number of individuals for

Description Fisher’s exact test, Allele frequency, statistics estimated from statistical model, forward direction or reverse direction,
P-value calculated by Fisher exact test, converted disease code, description of disease code, and actual code

chrom, start pos, end pos, ref wt, alt wt, func refgene, gene refgene, genedetail refgene,
exonicfunc refgene, aachange refgene, x1000g2014oct all, x1000g2014oct eur, snp138, sift score, sift pred,

Column names polyphen2 hdiv score, polyphen2 hdiv pred, polyphen2 hvar score, polyphen2 hvar pred, lrt score, lrt pred,
GWAS mutationtaster score and pred, mutationassessor score and pred, clinvar 20150330, cadd, cadd phred

Example 22,17265124,17265124,A,C,exonic,XKR3,NA,nonsynonymous SNV,XKR3:NM 175878:exon4:c.T765G:p.F255L,
0.694489,0.6282,rs5748623,1,T,0.0,B,0.0,B,0.001,N,1.000,P,-1.1,N,NA,,
columns 1-5: genomic positions in BED format [14],
columns 6-10: annotation of variants to genes based on NCBI reference sequence collection [15]
columns 11-12: frequencies of genetic variants within world populations based on 1000 Genomics project [16]

Description column 13: RS id, columns 14-15: protein function by amino acid substitution [17]
columns 16-19: Polyphen2 [18], columns 20-21: Likelihood Ratio Test Query [19],
columns 22-23: mutation taster [20], columns 24-25: mutation assessor [21], column 26: CLINVAR [22]
columns 27-28: Combined Annotation Dependent Depletion (CADD) [23]

Fig. 2. System Architecture: worker in node1 is not shown for simplicity.

application. The requests are sent to master through SparkR
with the type of Spark SQL [26]. Spark master distributes
workloads for requests to executors (worker instances) that re-
trieve data from GlusterFS. Subsequently executors process the
analysis, and results are sent back to Shiny application through
master and SparkR. In case processing time is calculated to
be long in Spark cluster, only partial results are returned to
Shiny application, and the keys for further processing are
temporarily saved in MongoDB. Asynchronous Java daemon
server periodically checks and sends the outstanding requests
to Spark cluster, save results into Mongo DB, and sends
notification emails.

C. New Search: front-end

User interface consists of Shiny input widgets [27] (select-
Input, textInput, and actionButton) and DataTable (DT) [28]
output object (DT::dataTableOutput) as shown in Fig. 3(a).
Inputs to find diseases are RS ids (e.g. rs116885116) or end
positions (e.g. 20149361) along with a chromosome (or all

Algorithm 1 New Search: Disease
Input: chrom, {rs id}, {end pos}
Output: {disease} . {disease}: data frame

1: phewas ← loadPheWAS(chrom) . load PheWAS data
2: gwas ← loadGWAS(chrom) . load GWAS data
3: listOfKeys{chromn,end posn} ← getListOfKeys(chrom,
{rs id}, {end pos}) . using GWAS

4: if numberOfKeys > THRESHOLD then
5: . long processing time
6: {disease} ← getDisease(...{chromt,end post})
7: . using PheWAS, t: threshold
8:
9: Mongo.RequestDB ← ({chromt+1,end post+1}...)

10: collectionName ← userId + timestamp
11: Mongo.QueueDB ← (collectionName)
12: . for back-end processing
13: else
14: {disease} ← getDisease(...{chromn,end posn})
15: . using PheWAS, n: total # of {chrom,end pos} pairs
16: end if
17: Mongo.DataDB ← {disease} . for narrow search later
18: return {disease}
19: . all column values of PheWAS shown in Table I

chromosomes). Inputs to find genotypes are disease codes (e.g.
461) or description (e.g. Diabetes) along with a chromosome
(or all chromosomes).

Algorithm 1 describes how system processes new search
requests to find diseases. Given inputs (chromosome, list of
RS ids and end positions), PheWAS and GWAS data for the
chromosome are loaded from CSV files. Using GWAS, list



(a) New Search (b) Narrow Search

Fig. 3. Web UI: selectInput widget (dropdown button) is used for chromosome. textInput widget is used for RS ID, end position, dx, and dx description.
actionButton widget is used for search disease and search genome buttons. DT::dataTableOutput object is used to show results in table format below input
widgets. For narrow search, first, prev, next, and last buttons are used to load partial documents out of large number of documents.

of key pairs with a chromosome and an end position are
retrieved. If the number of key pairs are less than threshold
value set to 2000 which is configurable, we retrieve diseases
(with all column values of PheWAS shown in Table I) with
the type of data frame (similar to table format with rows and
columns) by running Spark SQL [26] such as “select * from
phewas where (chrom = 3 and pos in (18599078))”. Having
options to choose specific columns to be returned can reduce
size of results, resulting in faster response time. This would
be our future work. If the number of key pairs are larger
than threshold value, it is expected to have long processing
time which is longer than 3 to 100 seconds depending on the
number of chromosomes. Thus, diseases using key pairs up to
only threshold ({chrom2000,end pos2000}) are processed. The
remaining key pairs (starting from {chrom2001,end pos2001})
are saved into request db in Mongo database while the
collection name consisting of a user login id and timestamp is
saved into queue db in Mongo database as a job key for back-
end processing. The diseases are saved into data db in Mongo
database for narrow search later. Mongolite R package [29]
is used for transactions to Mongo database. Last, diseases are
returned and shown through front-end UI with the table and
plot formats.

The process of new search to find genotypes is similar
except for using different inputs (disease codes or/and descrip-
tion along with chromosomes) and outputs (all column values
of GWAS shown in Table I). Changes on line numbers are
as follows: Line3: getListOfKeys(chrom,{dx},{dx desc}),
Line6,14: {genotypes} ← getGenotypes({chrom,end pos}
pairs), Line17,18: Mongo.DataDB ← {genotypes}, return
{genotypes}. getListOfKyes() uses PheWAS, and getGeno-
types() uses GWAS.

D. New Search: back-end

Outstanding requests to take long time are processed in
the background after partial results are returned to front-end
UI. A “Async server” daemon runs “spark-submit” command
with an analysis application JAR file packaged by Maven and
processes the outstanding requests periodically. The interval
of running is configurable. In Spark cluster, the analysis
application retrieves the list of key pairs of a chromosome
and an end position from Mongo DB through Mongo DB

Java driver, and processes the analysis in worker nodes. The
data frame returned from workers are converted and saved into
Mongo DB for narrow search later.

Analysis application sends an notification email every time
each job is processed. We installed and configured Postfix as a
send-only SMTP server. Codes sending emails run on JavaMail
API and JavaBeans Activation Framwork (JAF).

E. Narrow Search

Narrow search shown in Fig.3(b) enables a user to find
exact results by reusing search results saved in Mongo DB.
Shiny application retrieves results from Mongo DB through
mongolite R package [29]. The combination of user id and
time stamp (e.g. user1 20200722 165543) is the collection
name used as a key. A large number of result documents
cannot be loaded at one time from MongoDB due to long
waiting time and unwieldy user interface with a large number
of pages (e.g. assume a collection with half million result
documents). Thus, we retrieve partial documents using four
buttons including first, prev, next, and last. The first and last
buttons load the first block and the last block in a collection.

“plot” button is to visualize table format results using Man-
hattan plot [30]. Each point in the Manhattan plot represents a
variant. With data of multiple chromosomes, the graph shows
how much genomic data are strongly correlated with diseases
using -log10(pvalue). We use manhattanly R package for the
plot [31].To draw PheWAS data, we use scatter plot using
plotly R graphing library which makes interactive graphs [32]

IV. EVALUATION

A. Performance

A new search consists of front-end operation that returns
partial outputs through SparkR and back-end operation that
processes the outstanding search in the background using
spark-submit command. We measured the running time of
front-end and back-end operations while varying the number of
executors to 4, 8, 16, and 32. Each executor uses 2 CPU cores
and 16 GB. Executors are equally distributed to four worker
nodes. For example, for 32 executors, each worker node runs
8 executors with 16 cores and 128 GB, resulting in 64 CPU
cores and 512 GB in total for processing a user request.
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Fig. 4. Running time: search disease
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Fig. 5. Running time: search genome
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Fig. 6. CPU overhead: search disease
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Fig. 7. CPU overhead: search genome
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Fig. 8. Memory overhead

Fig. 4 displays running time for searching disease with
inputs of RS ids (rs116714698,rs116885116,rs17044614) and
end positions (17040612,20149361,17044614) either in chro-
mosome 22 or in all chromosomes. We averaged 5 times’
running for the same request. ‘Total’ is the sum of front-end
and back-end running time. Running time becomes faster with
more executors due to the advantage of parallel processing.
The running time with 32 executors is not decreased much
compared to 16 executors. This indicates the existence of
upper bounds of the number of executors depending on
workloads, which we will explore deeply in the future work.
The running time of front-end operation is much less than
back-end processing considering fast-interactive response with
small amount of results to user’s request. For all chromosomes,
it takes long time for front-end operation to return results. The
percentage to separate workloads between front-end and back-
end operations is configurable.

Fig. 5 show running time for searching genome data with
inputs of DX codes (461,461.8) and DX description (Diabetes)
either in chromosome 22 or in all chromosomes. Running

time decreases with more executors. It takes much longer
time to search genome data than searching disease as shown
in Fig. 5(b). This is because the number of genome data
associated with a disease is much more than the number
of disease associated with a genome data. Narrow search is
normal database operation on MongDB whose running time
is not shown due to limited space.

B. Overhead

We measured CPU and memory overhead of four nodes in
the Spark cluster using ‘sar’ command (‘-u’ and ‘-r’ options
for cpu and memory respectively) of sysstat package.

Figs. 6 and 7 shows additional CPU usage for searching
disease and genome data. The same requests as those in perfor-
mance section were used. The CPU usage per node increases
with more executors, and the workload of each request is
balanced to four nodes. The CPU overhead of node1 running
a master additionally is a little bit larger than other nodes in
general. Fig. 8 shows the memory overhead increases with
more executors. We find CPU is underutilized for searching
genome data as shown in Fig. 7: 66% (64 out of 96 cores) are
allocated but 40% are used. For memory usage, 90% (512 out
of 562 GB) are allocated but 25% are used. Considering that 32
executors are not much beneficial compared to 16 executors
for the requests, dynamically changing configuration of the
number of cores and memory size in an executor can increase
performance while utilizing resources at maximum depending
on the type of data set and the number of concurrent requests,
which we will explore in the future work.

V. RELATED WORK

[33] introduced using Spark cluster along with SparkR
to increase better performance over message passing inter-



face (MPI) that is used by HPC clusters and packaged for
most Linux distributions. Approaches for efficient dynamic
resource allocation in Spark cluster were studied to reduce
underutilization of resources and to maximize performance
(e.g. decrease running time). Spark configuration is tuned dy-
namically using neural network-based search algorithm to find
optimal configuration from prediction model [34]. [35] finds
“diminishing return”: considering Spark applications require
many iterations, usage of computation resources diminishes as
more iterations are completed. Thus, the number of allocated
executors are reduced at underutilized worker nodes, and
deallocated resources are used by other applications.

Shiny R package is used for developing interactive Web
applications on R and integrating R functions for graphical and
interactive analysis [36]. StructuRly [37] is a shiny application
to produce interactive plots for population genetic analysis.

VI. FUTURE WORK AND CONCLUSION

Medical big data analysis system is a prototype to check
application design and system architecture with summary data
of the biobank whose size amounts to 20PB. To handle full
amount of data, large-scaled Spark cluster needs to be de-
ployed with more worker nodes (presumably tens or hundreds
of nodes) either in private or in Cloud. We run Spark on
standalone cluster mode with fixed configuration. We are
planning to exploit Spark configuration API in application,
Apache Yarn, or Mesos for the dynamic resource allocation.
Regarding the privacy issue of medical data, we envision
a hybrid system where privacy-sensitive data are saved into
private servers and summary data can be processed in large-
scaled Cloud environment.

We introduced a medical Big data analysis system with
front-end Web-based UI and back-end Spark/MongoDB
servers, which can accelerate medical research on precision
medicine by fast exploring correlation between diseases and
genomic data. The design and system configuration would be
helpful for researchers to deploy medical Big data analysis
system.
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