
Game Development in Unity Using Oculus Quest VR

Christopher Todd

California State University-Stanislaus, Turlock, CA

ctodd1@csustan.edu

Abstract — The Oculus, which is owned by Facebook, is quickly

becoming the most popular medium for an interactable 3D gaming

experience by way of Virtual Reality. Unity Real-Time

Development Platform is one of few options that game developers

have to create VR games for the Oculus which makes it a desirable

platform to learn. This paper will address all the components that

went into the creation of a game that runs on the Oculus Quest

using Unity. It will present some of the methods necessary to allow

the game to implement procedurally generated stages and a racing

vehicle to be the object the player takes control of to accomplish

the task of completing each stage.

I. MOTIVATION

Game development is an area of computer science that is
most often seen as a niche. However, with the ever-increasing
popularity of virtual reality in most recent years, game
development is, by far, one of the best fields in computer science
to learn. Not only is VR becoming more and more popular with
the gaming industry, it is also become an aid to help with
training up medical workers, military personnel, and even
teenagers helping them become more confident behind the
wheel of a vehicle [1] [2] [3]. With these industries using VR, it
is the motivating factor for learning how to create a video game
which is just beginning stages of utilizing a much more complex
piece of technology for a greater purpose.

II. RELATED WORK

Virtual Reality has made it possible for games to be more

interactive amongst the player base. The following aspects of

these released games will be implemented in the game

discussed in this paper.

A. VR being used in iRacing

iRacing is a racing simulator that

has expanded their gaming platform

to support Virtual Reality which

immersive their player base into one of the most realistic

vehicle racing games currently on the market [4].

B. Procedural generation found in

Borderlands

As for procedural generation to

create an infinite level system, which

is usually created for higher replay value amongst the player

base, procedural generation is used in games such as

Borderlands which spawns procedurally generated weapons

when looting boxes, killing enemies, and completing quests [5].

III. METHOD

The project desired is a racing-like game that will
procedurally generate stages with the goal of completing as
many stages as possible before the time runs out. A vehicle is
instantiated at the beginning of each attempted game run with
the player sitting in the seat of the vehicle with their vision
immersed in the Oculus Quest’s virtual reality. The Oculus
controllers will allow the player to drive the vehicle through
each consecutive stage until the game has ended.

Each stage generated will have a randomly generated point
value that must be achieved by collecting point pillars that have
been given randomly generated set values. Each point pillar has
walls surrounding it to create an obstacle for the car to maneuver
around. Each stage is guaranteed to have enough pillars to
collect to achieve the point value for that stage. When the player
has collected enough points that is equal or greater than the
stage’s total point value to be earned, the wall that is leading to
the next stage will be lifted up giving the player a new stage to
drive to and complete. When the vehicle enters each new stage,
the current collected points will be set back to ‘0’ and the last
stage is destroyed.

An LCD screen will be placed on the middle console for the
player to have real-time feedback of important values needed to
achieve the games purpose. These values include the timer
which counts down by seconds, the current points collected in
the given stage, and the speed of the vehicle. The current speed
of the vehicle is important when collecting the pillars because it
will be added as a bonus to the current points collected which
gives the player an ability to get to the next stage quicker,
possibly collecting few pillars. The game ends when the timer
reads ‘0’ or the player has fallen over the edge of the stage.

 As shown in the figure, the Core Game has three main
components that make the game mechanics work: Vehicle,
Stages, and Game Manager. Each main component has
subcomponents that lend to its functionality as well.

A. Vehicle

The vehicle has many methods to make its functionality
work in sync with the game’s mechanics. Taking a closer look
under the hood, the vehicle is equipped with a canvas, an
OVRCameraRig, Colliders, and as assortment of vehicle scripts.

1. Canvas

The canvas is normally used for
user interface. The canvas object is
attached as a child of the vehicle in
order for it to stay static to the LCD
screen that is placed on the middle
console. The canvas has a scoreUI object, speedUI object, and
timeUI object.

When the player
collects points, the
scoreUI object has a script
that increments the value of a score instance variable and then
runs a function to display the score to the screen of the vehicle.

The speedUI
object has a script
that gets an update
every frame of the current speed of the vehicle and translates the
speed’s value to the LCD screen.

The timeUI object
has a script that
manages the timer
countdown as well as a method that allows for increasing the
timer by X number of seconds based on the point value
collected.

2. OVRCameraRig

In Unity, a game object can be
saved and stored in the assets folder as
a prefab. A Prefab usually consists of
multiple game objects as children to
the main game object/prefab. Prefabs
help speed up the gaming

development process because once a game object is created for
a specific purpose, the prefab can be replicated or instantiated
elsewhere in the game. All this to say that the OVRCameraRig
is a prefab a part of the Oculus library that was imported as an
asset package through the package manager. This prefab comes
with all of the components and scripts necessary for the Oculus
Quest to be used as the virtual reality camera in this game. This
camera is positioned at a normal head level in the driver’s seat
of the vehicle.

3. Colliders

Colliders in Unity are used for
either collisions or triggers. The
collider is attached as a
component of a given game
object with scale and offset in

relation to the object’s transforms. It is good to give the collider
a shape that is in close relation to the shape of the object it is
being attached to. Collisions will use the physics engine to show
the displacement of two game objects that have colliders
attached to them when they meet at an exact location. The
displacement is based on object A and object B’s current
velocity, mass, direction, etc. when they collide.

However, to change a
collider into a trigger, it is
as simple as checking a
box in the inspector
located on the collider’s component. When the trigger is true, it
no longer interacts with other colliders by displacing the game
object, but instead, it triggers an event within a script attached to
the game object giving action to the collider that passed through
another collider. For example, if I wanted to have the vehicle
collect points as it passed through a game object that is a visual
representation of a coin, it wouldn’t make sense to have the
collider on the coin to be a non-trigger. The reason for this is that
the vehicle would bounce off of the coin instead of passing
through the coin.

Changing a
collider’s trigger
value to true
allows a script to
use the
OnTriggerEnter method which will then be programmed to
determine what happens at the point the trigger collider meets
either another trigger collider or a normal collider. In this case,
it makes sense to collect a coin by passing a method which
increases the score by X amount of points and then destroys the
game object that was attached to the collider as the vehicle
drives through the coin. There is also a similar method that can
be called if the collision’s trigger checkbox was false which is
the OnCollisionEnter method. Note that one is a Collision
method and the other is a Trigger method.

4. Vehicle.cs

Vehicle.cs is not a script itself, rather a representation of
twelve (12) scripts that are attached to various components of
the vehicle such as the colliders, wheel effects, LCD screen
which controls the user interface, car audio, car controller,
steering wheel rotation, steering wheel colliders, break lights,
suspension, and skid trails. The vehicle’s functionality is
something that was not programmed from scratch. It was
stripped down as parts from a standard asset vehicle found on
the Unity Asset Store. The vehicle was sculpted by a 3D object
model artist named Preston Linderman.

The vehicle was made into a prefab in order to be instantiated
at the beginning of every round. The scripts attached to the
vehicle work in sync with one another by way of methods and
instance variables being passed around throughout the scripts to
give the vehicle its functionality.

B. Stages

Stages is where the game’s procedural generation happens.
A single stage is prefabbed with multiple game object children
where it is instantiated at the beginning of each game attempt or
when the vehicle transfers over from one stage area to the next.

Collider seen as green wireframe

box around vehicle

The methods that create the random environment for the player
comes together when each subcomponent works in tandem with
each other to create each unique stage layout. The key
components for the Stages consist of a Wall, Points, Colliders,
and Stages.cs.

1. Wall

A wall is attached at the
north end of each instantiated
stage. It displays a point
value that is randomly
generated using an RNG
(Random Number
Generator). The player must
collect this point value that is
on the wall in order to advance to the next stage. The wall is
lifted up six (6) meters when the score on the LCD screen is
greater than or equal to the number on the wall. As you can see
in the screen capture above, the wall says 800 and the score on
the LCD in tiny font says 892. This makes the condition true in

the script, therefore,
raising the wall up to
allow the vehicle to pass
through to the next
stage.

2. Points

Points are collected and added to the score for every point
pillar driven through. Point pillars are a child of a point-obstacle-
track that is a prefab. When a new stage is instantiated, a random
number generator is used a few times to calculate the number of
points needed to complete the stage in order to move on to the
next stage and the position in which the point obstacle track
prefabs will be instantiated throughout the individual stage.

A numberOfObstacles variable is created on each wall script
and a random number is generated from 5 to and including the
possibility of 10. This numberOfObstacles value is then used to
calculate the score needed to progress to the next stage by
multiplying it by one-hundred (100) and attaching the result to a
scoreNeededToAdvance variable which is used to be the value
displayed on the wall and used as the conditional value needed
to be achieved to raise the wall to progress to the next stage.

3. Colliders

Each stage prefab has a trigger collider that is positioned at
the location of the wall. The event that is triggered when the
vehicle passes through the trigger collider is an OnTriggerExit
method which will only trigger the event when the collider
exits the parameter of the collider.

 4. Stages.cs

Stages.cs is not a script itself, rather a representation of six

(6) scripts that are attached to various components of the Stage

prefab such as the collider which ends the game if the car falls

off the edge, to each north wall to move it upwards when the

player has achieved required score to advance, to the Stages

prefab which has important methods for stage creation, to the

wall canvas which displays the score needed to advance to the

next stage, and to a child object named Tracks which helps

delegate where each point collector goes based on an RNG.

C. Game Manager

The Game Manager may look like it doesn’t hold much
value, but it does have an important purpose. It is a game object
that doesn’t get destroyed on new scene loaded. This means that
it can hold scripts that needs to be passed from scene to scene
that have instantiated an object that is holding data that must be
maintained throughout the gameplay. It also carries many of the
important scripts that are not meant to be attached to temporary
game objects because temporary game objects usually get
destroyed.

1. PlayerPrefs.cs

PlayerPrefs.cs is a script that will record the greatest stage
completed into a user file on the Oculus Quest. This greatest
stage completed is displayed on the Title Screen and End Game
Screen.

2. AudioManager.cs

The AudioManager.cs takes care of the sounds in the game.
It takes in a sound array of all sound clips and attaches an
AudioSource to each sound clip. This also has a method that
plays any sound when the string name of the clip is passed into
the parameters.

3. LevelLoader.cs

 The LevelLoader.cs contains the methods in order to load
scenes such as Title Screen scene, Core Game scene, End Game
scene, etc. These methods are called on menu buttons and events
to trigger the new scene.

IV. RESULT

There are many benefits that the Unity Game Engine has in
developing a 3D interactable game with the Oculus Quest. One
being that Unity makes it very easy to create a game for Virtual
Reality given the many pre-built packages that take care of the
synchronization with the Oculus Quest interface. The results of
the previous section are shown in the video below.

V. CONCLUSION

To conclude, game development using Unity for the Oculus

Quest is fun and exciting. The learning curve is sometimes a

little steep, but if one is motivated, learning to be proficient in

some of the core concepts of game development is possible.

REFERENCES

[1] M. Sattar, S. Palaniappan, A. Lokman, A. Hassan, N. Shah,

Z. Riaz, "Effects of Virtual Reality training on medical

students' learning motivation and competency.," Pakistan

Journal of Medical Sciences, vol. 35, no. 3, pp. 852-857,

2018.

[2] M. Velichko, "VR Military Training – the Next Step of

Combat Evolution," Jasoren, 2019. [Online]. Available:

https://jasoren.com/vr-military-training-the-next-step-of-

combat-evolution/.

[3] W. Vlakveld, M. R. E. Romoser, H. Mehranian, F. Diete,

and D. L. Fisher, "Does the experience of crashes and near

crashes in a simulator-based training program enhance

novice driver's visual search for latent hazards?,"

Transportation Research Record, no. 2265, pp. 153-160,

2011.

[4] "Simracing takes on a whole new look with a Virtual

Reality headset!," iRacing, 2020. [Online]. Available:

https://www.iracing.com/virtual_reality/.

[5] "Weapons," Fandom, [Online]. Available:

https://borderlands.fandom.com/wiki/Weapons.

[Accessed 2020].

To start, right click and click Play

