Machine Learning and **Data Mining** An Introduction with WEKA

AHPCRC Workshop - 8/18/11 - Dr. Martin Based on slides by Gregory Piatetsky-Shapiro from Kdnuggets http://www.kdnuggets.com/data_mining_course/

Terminology

Components of the input:

- Concepts: kinds of things that can be learned · Aim: intelligible and operational concept description
- Instances: the individual, independent examples of a concept
- Note: more complicated forms of input are possible Attributes (Features): measuring aspects of an instance
- · We will focus on nominal and numeric ones

What's a concept?

- Data Mining Tasks (Styles of learning):
 - Classification learning:
 - predicting a discrete class
 - Association learning: detecting associations between features

 - Clustering: grouping similar instances into clusters
- Numeric prediction:
- predicting a numeric quantity Concept: thing to be learned
- Concept description: output of learning scheme

Classification learning

- · Example problems: attrition prediction, using DNA data for diagnosis, weather data to predict play/not play
- Classification learning is supervised - Scheme is being provided with actual outcome
- · Outcome is called the class of the example
- Success can be measured on fresh data for which class labels are known (test data)
- · In practice success is often measured subjectively

Association learning

- Examples: supermarket basket analysis -what items are . bought together (e.g. milk+cereal, chips+salsa)
- Can be applied if no class is specified and any kind of structure is considered "interesting"
- Difference with classification learning:
 - Can predict any attribute's value, not just the class, and more than one attribute's value at a time
 - Hence: far more association rules than classification rules
 - Thus: constraints are necessary _

Minimum coverage and minimum accuracy

Clustering

Examples: customer grouping

٠

- Finding groups of items that are similar
- Clustering is unsupervised - The class of an example is not known
- Success often measured subjectively ٠

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	ris setosa
2	4.9	3.0	1.4	0.2	In setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versidolor
101	6.3	3.3	6.0	2.5	Iris virginica
102	5.8	2.7	5.1	1.9	ris virginica
witten freihe					

	Numeric prediction							
 Classification learning, but "class" is numeric Learning is supervised 								
Ceaning is supervised Scheme is being provided with target value Measure success on test data								
weasure success on lest data								
Outlook	Temperature	Humidity	Windy	Play-time				
Sunny	Hot	High	False	5				
Sunny	Hot	High	True	0				
Overcast	Hot	High	False	55				
Rainy	Mild	Normal	False	40				

Display: Focus on Classification • Learn Classifier (function, rule, hypothesis) • Supervised: learn from training data $(\vec{x}_1, y_1), ... (\vec{x}_n, y_n)$ - Feature vector, class • Apply to new data - Feature vector -> class

- Data collected from Medical Web Pages
- Goal: learn two classes
 - Reliability (trustworthiness of information)Type of Page

254 Features

- · Link-Based
 - Inlinks, Outlinks, PageRank, Domain · Server host name, secure
- HTML markup
 - Symbols, metadata, JavaScript
 - Bold, italics, underline, font
 - · Counts and frequencies

254 Features

- · Text properties
 - LSA vector length, coherence, words per paragraph
 - Personal pronouns, punctuation, unique words
- Lists of words
 - Whole text, outlinks, anchor text
 - · Criteria, medical, commercial, alternative · Disclaimer, diagnosis, shopping cart, miracle

- "!" in text
- Secure outlinks in the same
- server host name negatively
- Number of font attributes
- Words in anchor text
 - price
 - products
 - testimonial
- _ purchase"to order"
- products testimonial
 - therapist

· Words in Text

natural

price

prevention

doctor
I, me, my, them, us, we, you, your
miracle

Decision Trees

- · Nodes are the features
- Maximize information gain
 - Expected reduction in entropy by partitioning examples according to given attribute $-\sum p_i \log_2 p_i$
 - Entropy =
 - · 0 when all in same class
 - 1 when equal number in each class

Kappa Statistic

- Chance Corrected Measure of Agreement
- Cohen 1960
- κ = (P(O) P(E)) / (1 P(E))
 - P(O) = proportion of agreement observed
 - P(E) = proportion of agreement expected by chance

Now Let's Look at the .arff file