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Overview:

• polynomials, “zeros” of polynomials - varieties

• polynomial rings, ideals in polynomial rings, ideals of varieties

• translating Euclidean geometry into commutative algebra

• proving Euclidean geometry theorems with commutative algebra software

• troubles with the process: degenerate cases and how to handle them
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Polynomials:

Examples:

1. f (x, y) = x2 + y2 − 4

2. g(x, y) = xy − x3 + 1

3. h(x, y, z) = z − x2 − y2

4. j(x, y, z) = z2 − x2 − y2
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(Algebraic Geometry) Varieties:

Let k be a field, e.g. R (real numbers), or C (complex numbers).

Definition: Let f (x1, x2, . . . , xn) be a polynomial in x1, x2, . . . , xn with
coefficients in k. Then set

V (f ) = {(a1, a2, . . . , an) ∈ kn | f (a1, a2, . . . , an) = 0}

We call V (f ) the affine variety defined by f .

Note: V (f ) is the set of all solutions of f = 0
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Examples:

1. f (x, y) = x2 + y2 − 4 = 0

x2 + y2 = 4 (V (f ) is a circle of radius 2)

2. g(x, y) = xy − x3 + 1 = 0

y =
x3 − 1

x
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3. h(x, y, z) = z − x2 − y2 = 0

z = x2 + y2 (V (f ) is the parabola z = x2 rotated about the z-axis)

4. j(x, y, z) = z2 − x2 − y2 = 0

z2 = x2 + y2 (V (g) is a cone)
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Notes:

• V (f1, . . . , fs) = {(a1, a2, . . . , an) ∈ kn | fi(a1, a2, . . . , an) = 0
for all 1 ≤ i ≤ s}

• V (f1, . . . , fs) = V (f1)
⋂

V (f2)
⋂ · · · ⋂

V (fs)
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(Commutative Algebra) Polynomial Rings:

Definition: Let k be a field, e.g. R or C. A polynomial ring in n-
variables over k, denoted k[x1, . . . , xn] is the collection of all polynomials
with coefficients from k under polynomial addition and multiplication.

Definition: Let I be a non-empty subset of k[x1, . . . , xn]. We say I is an
ideal of k[x1, . . . , xn] if

• 0 ∈ I ,

• if f, g ∈ I , then f + g ∈ I ,

• if f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I .
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Example: Consider R[x], the polynomial ring consisting of all polynomials
in x with real coefficients. Define the ideal generated by x to be

I = 〈x〉 = {g(x) · x | g(x) ∈ R[x]}.

Then I , the set of all polynomials with zero constant terms, is an ideal of R[x].

Example: Let f1, . . . , fs ∈ k[x1, . . . , xn]. Then the ideal generated by
f1, . . . , fs is

〈f1, . . . , fs〉 = {h1f1 + . . . + hsfs | h1, . . . , hs ∈ k[x1, . . . , xn]}.

Example: I = 〈x, 2〉 in R[x] is the set of all polynomials with even constant
term. Indeed,

I = 〈x, 2〉 = {g(x) · x + h(x) · 2 | g, h ∈ R[x]}
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Example/Defn: Let W ⊂ kn, a set of n-tuples. We want to consider the
set of all polynomials which vanish on W . Define this set of polynomials as

I(W ) = {f ∈ k[x1, . . . , xn] | f (w) = 0 for all w ∈ W}.

Note:

1. I(W ) is an ideal of k[x1, . . . , xn]

2. W ⊂ B if and only if I(W ) ⊃ I(B)

Recall: V (f1, . . . , fs) = {(a1, a2, . . . , an) ∈ kn | fi(a1, a2, . . . , an) = 0
for all 1 ≤ i ≤ s}

= V (〈f1, . . . , fs〉)
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The Big Deal: So I(−) takes a set of n-tuples and gives an ideal, and
V (−) takes an ideal and gives a set of n-tuples. This relationship is inclusion
reversing.

Even Bigger Deal: Now V (I(W )) = W . However, in general
I(V (〈f1, . . . , fs〉)) ⊇ 〈f1, . . . , fs〉. Hilbert’s Nullstellensatz will save the day!

Theorem: (Hilbert’s Nullstellensatz) Let k be an algebraically closed field.
For any ideal J ⊂ k[x1, . . . , xn],

I(V (J)) =
√

J = {f | fm ∈ J for some integer m ≥ 1}.
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Note:

• V (〈x〉) = V (〈x2〉)

• Over R, V (〈x2 + 1〉) = V (〈1〉) = ∅
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Biggest Deal:
Computational Commutative Algebra allows us to compute examples.
If we know what elements generate an ideal I , i.e. I = 〈f1, . . . , fs〉, then we
can program a computer to

• compute
√

I ,

• (more importantly) determine if any given polynomial g is in I . That is,
if we can find polynomials h1, . . . , hs such that

g = h1f1 + h2f2 + · · · + hsfs.

In fact, if such a decomposition exists, we can actually compute h1, . . . , hs.

• determine if any given polynomial g is in
√

I .
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Translating a Euclidean Geometry Theorem
into Algebra

Example: Consider a circle with points O,A, B on the circle. Suppose the
line segment OA is a diameter of the circle. Then line determined by OB is
perpendicular to line determined by BA.

Automatic Proof: Place a coordinate system so that

O = (0, 0), A = (a1, a2), B = (b1, b2).
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We must translate the theorem into commutative algebra/algebraic geometry.

• Let r be the radius of the circle.

• (hypothesis 1) OA is a diameter of the circle. By the distance formula:

2r =
√

a2
1 + a2

2.

This gives our first hypothesis equation:

h1 := a2
1 + a2

2 − 4r2 = 0
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• (hypothesis 2) B is a point on the circle with radius r and center



a1

2
,
a2

2



.

The equation of the circle is:


x− a1

2




2
+



y − a2

2




2

= r2.

Then


b1 −
a1

2




2
+



b2 −
a2

2




2

= r2.

So



2b1 − a1

2





2

+



2b2 − a2

2





2

− r2 = 0,

which gives our second hypothesis equation:

h2 := (2b1 − a1)
2 + (2b2 − a2)

2 − 4r2 = 0.
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• (conclusion) Finally, we must translate the thesis statement (i.e. what we
are trying to prove): line OB is perpendicular to line BA.

The equation of line OB is

y =



b2

b1



 x.

The equation of line BA is

y − a2 =
b2 − a2

b1 − a1
(x− a1).

The lines are perpendicular if the product of their slopes is −1:

b2

b1




b2 − a2

b1 − a1



 = −1

So b2(b2 − a2) = −b1(b1 − a1).

Thus, our thesis equation is:

t := b2(b2 − a2) + b1(b1 − a1) = 0.
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Main Idea

We have the following polynomials equations in the variables a1, a2, b1, b2, s:

h1 := a2
1 + a2

2 − 4r2 = 0

h2 := (2b1 − a1)
2 + (2b2 − a2)

2 − 4r2 = 0

t := b2(b2 − a2) + b1(b1 − a1) = 0.

To prove the theorem, it is enough to show that the values of a1, a2, b1, b2, s
which make h1 = h2 = 0 also make t = 0. That is the points which make the
hypothesis polynomials vanish also make the thesis polynomial vanish.

Set H to be the “hypotheses ideal,” H = 〈h1, h2〉.

Set T to be the “thesis ideal,” T = 〈t〉.

We must show V (h1, h2) ⊆ V (t), or equivalently I(V (H)) ⊇ I(V (T )).

That is
√

T ⊆
√

H .
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It is enough to show that the generators of T (for this example, t) are elements
of
√

H .

For this example, it happens to turn out that t ∈ H ⊆
√

H .

We may use a computer algebra system, such as CoCoA to determine this.
The code (with output) looks like:

Use R::=Q[a[1..2],b[1..2],r];
I:=Ideal(a[1]ˆ2+a[2]ˆ2-4rˆ2, (2b[1]-a[1])ˆ2+(2b[2]-a[2])ˆ2-4rˆ2);
T:=b[1](b[1]-a[1])+b[2](b[2]-a[2]);
NFsAreZero([T],I);
TRUE

Hence the theorem is true.
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Degenerate Cases

The previous example was very nice in that the degenerate situation did not
hinder the algebra. However, this is not always the case.

Example: Theorem: The diagonals of a parallelogram bisect each other.

Let A, B, C,D be the vertices of the parallelogram, and N be the point of
intersection of the diagonals.

We must prove AN = DN and BN = CN .

20



Automatic Proof: Introduce a coordinate system with

A = (0, 0), B = (u1, 0), C = (u2, u3).

Inherent in this setup, we need u1 -= 0 and u3 -= 0.

Let D = (x1, x2). To require that we indeed have a parallelogram, we need:

AB ‖ CD : 0 =
x2 − u3

x1 − u2

AC ‖ BD :
u3

u2
=

x2

x1 − u1
.

Clear denominators to get the hypothesis equations:

h1 := x2 − u3 = 0

h2 := (x1 − u1)u3 − x2u2 = 0.
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Now for N = (x3, x4). It must satisfy

A, N,D are collinear :
x4

x3
=

u3

x1

B, N, C are collinear :
x4

x3 − u1
=

u3

u2 − u1
.

Clear denominators to get the hypothesis equations:

h3 := x4x1 − x3u3 = 0

h4 := x4(u2 − u1)− (x3 − u1)u3 = 0.
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To create the thesis polynomials, we use the distance formula, then square
each side.

AN = ND : x2
3 + x2

4 = (x3 − x1)
2 + (x4 − x2)

2

BN = NC : (x3 − u1)
2 + x2

4 = (x3 − u2)
2 + (x4 − u3)

2.

Cancel like terms, then write the thesis equations as

t1 := x2
1 − 2x1x3 − 2x4x2 + x2

2 = 0

t2 := 2x3u1 − 2x3u2 − 2x4u3 − u2
1 + u2

2 + u2
3 = 0.

Again, we create the “hypothesis ideal” H = 〈h1, h2, h3, h4〉 in the polynomial
ring R[u1, u2, u3, x1, x2, x3, x4].

We must show t1, t2 ∈
√

H .
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If we run to a computer algebra system (like CoCoA) and do some computa-
tions which involve Gröbner bases, we will find the inclusion is false.

Why? The variety V = V (h1, h2, h3, h4) is reducible, that is it is the union
of other affine varieties.

With the use of Gröbner bases computations, it turns out that

V = V ′ ⋃
U1

⋃
U2

⋃
U3,

where

V ′ = V


x1 − u1 − u2, x2 − u3, x3 −
u1 + u2

2
, x4 −

u3

2



 ,

U1 = V (x2, x4, u3),

U2 = V (x1, x2, u1 − u2, u3),

U3 = V (x1 − u2, x2 − u3, x3u3 − x4u2, u1).

Notice that on U1, U2, U3, we have u1 = 0 or u3 = 0, which were the degenerate
cases. So we may restrict to V ′. Using our computer algebra system, we
conclude t1, t2 ∈ I(V ′), thus proving the theorem.
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The Process of Automatic Proofs

1. Translate the hypotheses into the vanishing of a set of polynomials,
h1, . . . , hn ∈ R[u1, . . . , um, x1, . . . xn], with u1, . . . , um being the parame-
ters of the geometric problem (and the variables xi depend upon the uj’s.

2. Translate the conclusion into the vanishing of a set of polynomials, tj, j =
1, . . . , s.

3. Compare V (t1, . . . , ts) and V (h1, . . . , hn), that is t1, . . . , ts and
√

H ,
where H = 〈h1, . . . , hn〉.

(a) We say a conclusion t follows strictly from the hypotheses if t ∈
√

H .

(b) We say a conclusion t follows generically from the hypotheses if t ∈
I(V ′), where V ′ is the union of irreducible components of V (h1, . . . , hn)
on which the ui are algebraically independent.
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Proposition: g follows generically from h1, . . . hn when there is some nonzero
polynomial c(u1, . . . , um) ∈ R[u1, . . . , um] such that c · g ∈

√
H .

Note: There is an algorithm to find such a polynomial c.
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