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Algorithm 4.1.1 Decimal to Binary Conversion Using Repeated Division by 2

[In Algorithm 4.1.1 the input is a nonnegative integer a. The aim of the algorithm
is to produce a sequence of binary digits r[0], r[1], r[2], ..., r[k] so that the binary
representation of a is

(rlklrlk — 11 - - r[2]7[1]r[0])2.
That is,
a=25rlk]+ 25 rlk— 114+ 22 20+ 21 r[1]+2° - £[0].]

Input: a [a nonnegative integer]

Algorithm Body: .
g:=a,i:=0
[Repeatedly perform the integer division of q by 2 until q becomes 0. Store suc-
cessive remainders in a one-dimensional array r[0], r[11,7[2], ..., r[k]. Even

if the initial value of q equals 0, the loop should execute one time (so that r[0] is
computed ). Thus the guard condition for the while loop isi = 0 or g # 0.]

while (i =0orq #0)

ne of the rli] :==q mod 2
most 1 as gi=qdiv2
[r[i1 and g can be obtained by calling the division algorithm.]
i=i+1
nt of zero end while
quotient- [After execution of this step, the values of r[0], r[11, ..., r[i — 1] are all O’s and
theorem, Us,and a = (r[i — 1]r[i — 2] - - - r[2]r[1]r[0])2.]
415 Output: r[0], r[1], 7[2], ..., r[i — 1] [a sequence of integers]
Exercise Set 4.1*
Write the first four terms of the sequences defined by the formu- 7. Letay =2k + L and by = (k — 1)’ + k + 2 for all integers
las in 1-6. k > 0. Show that the first three terms of these sequences are
)y 2 k . identical but that their fourth terms differ.
L g = , for all integers k& > 1.
+k Compute the first fifteen terms of each of the sequences in 8 and
2 b = 5-j for all integers i > 1 9, and describe the general behavior of these sequences in words.
TTEy gesJ = L (A definition of logarithm is given in Section 7.1.)
3¢ = (=1 for all integers i > 0 8. g, = |log, n] for all integers n > 1.
¥ 9. h, = n|log, n] for all integers n > 1.
4 d, =1+ ( 5) for all integers m > 0. Find explicit formulas for sequences of the form a,, a;, as, ...
with the initial terms given in 10-16.
n .
S o= [EJ -2, for all integers n > 0. 10. —-1,1,-1,1,-1,1 11. 0,1, -2,3,—4,5
. 6 fi=|%] 4 foralintegersn > 1 PRI A
' n 7|4 forallintegers n >-1. " 4°9° 16’ 25’ 36° 49
rmalized

%
SEIOr CXercises with blue numbers or letters, solutions are given in Appendix B. The symbol Hindicates that only a hint or a partial
Ution is given, The symbol >signals that an exercise is more challenging than usual.
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131 11 11 11 11 11 1

' 2’2 3'3 4’4 55 6°6 17

4

wl234 5 6

379727 81 2437729
15. 0 12 34 56

0= 3715757
16. 3,6, 12,24, 48,96

2 -nr—1
> 17. Consider the sequence defined by a, = H—HZ)— for

all integers n > 0. Find an alternative explicit formula for
a, that uses the floor notation.

18. Letag =2,a; =3,a0 = —2,a3 = 1,a4 = 0,a5s = —1, and
a¢ = —2. Compute each of the summations and products
below.

6 0 3 6 2
a. Z a; b. Z a; C. Z Az d. 1_[ a, €. H ay
i=0 i=0 j=1 k=0 k=2
Compute the summations and products in 19-28.
4 3.9
20. | [# 21 Y —

1 0
23. 3G+ 24 ) (+1)-2
i=1

j=0

5
19. Z(k +1)

k=1

4
22, ]’[(—1)!’
j=0

2

25. ]‘[(1 - %)

k=2

1
26. 2(18 +3)

k=-1
10 iG+2)

11 =
7LG-m1)  *evem

n=1 i=2

Write the summations in 29-31 in expanded form.

n i "1
29. g(—z) 3 ; &
Write each of 32-41 using summation or product notation.
32 2224 4245262+ 72
BAB-D-P-D+F-D-@-D+G*-1)

34, (22 -1)- (R —-1)- @ -1)
2 3 4

5
84 @31 5.6 B
36. 1 —r+r2—r34rt—p°
37. -1 -0 =) -0 —-13)-1 -1
38. P42 433 +... 443

30. Y JG+D

j=1

6
35. —
+7-8

39'l+_2_'_+3+;..+L
2t 3t 4 (n+ D!
0. n+n-D+n-2)+---+1
Mot tyr=2, 3, 1
2! 3! 41 n!
Compute each of 42-50.
&42.ﬂ 43.§—! 44ﬂ

3! 8! © 0!

n! n—1)! n!
as. (n—1)! a6. (n+1)! 47 (n—2)!
((n + D1)? n! n!
48. (n!)? 9. (n —k)! 50. (n—k-+ 1!

51. a. Prove that n! 4 2 is divisible by 2, for all integers n > 2.
b. Prove that n! 4 k is divisible by k, for all integers n > 2
andk=2,3,...,n.
H c. Givenanyintegerm > 2,isit possible to find a sequence
of m — 1 consecutive positive integers none of which is
prime? Explain your answer.

Transform each of 52 and 53 by making the change of variable
i=k+1.

5
52. Zk(k -1

"k
53. 1_[-———
2
k=0 k=1 k +4

Transform each of 54-57 by making the change of variable
j=i—1.

n+1 (1—1)2 n 7
54. 55. e
; i-n §i+n—1
n—1 2n =
i n—i+1
56. — 7. —_
e (et

i=1 i=n
Write each of 58—60 as a single summation or product.

58. 3. Xn:(Zk -3)+ i(4 — 5k)
k=1

k=1

59.2-) B +4)+5-) (2K —1)

k=1 k=]

"k k41
o (Mgt (1155)

61. Check Theorem4.1.1form = 1andn = 4 by writing out the

left-hand and right-hand sides of the equations in expanded - |

form. The two sides are equal by repeated application of
certain laws. What are these laws?

62. Supposeal[l], a[2], a[3], ..., a[m]is aone-dimensional ar-
ray and consider the following algorithm segment:
sum :=0
fork:=1tom
sum = sum + alk]
next k ‘
Fill in the blanks below so that each algorithm segment per- :

forms the same job as the one given above.

a. sum =0 b. sum :=0

fori:=0to for j:=2to
sum=_____ )osumi=____
next i next j
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Exercise Set 4.2

_ 1. Use mathematical induction (and the proof of Proposi-
tion 4.2.1 as a model) to show that any amount of money of
at least 14¢ can be made up using 3¢ and 8¢ coins.

2. Use mathematical induction to show that any postage of at
least 12¢ can be obtained using 3¢ and 7¢ stamps.

3. For each positive integer n, let P(n) be the formula

12+22+...+n2=@_+_1)6(_2ﬂ.

. Write P(1). Is P(1) true?

. Write P (k).

. Write P(k + 1).

. In a proof by mathematical induction that the formula
holds for all integers n > 1, what must be shown in the
inductive step?

a0 o

4. For each integer n with n > 2, let P (n) be the formula

n—1
Y +1) = Ll o). o 1
i=1 3
. Write P(2). Is P(2) true?
. Write P (k).
. Write P(k + 1).
. In a proof by mathematical induction that the formula
holds for all integers n > 2, what must be shown in the
inductive step?

a0 o

5

Fill in the missing pieces in the following proof that
1+34+5+--+@n—1)=n?

for all integers n > 1.

Proof: Let the property P (n) be the é'quation
143454+ @2n—1)=n%

Show that the property is true for n = 1: To establish the
property forn = 1, we must show that when 1 is substituted
in place of n, the left-hand side equals the right-hand side.
But when n = 1, the left-hand side is the sum of all the odd
integers from 1 to 2 -1 — 1, which is the sum of the odd
integers from 1 to 1, which is just 1. The right-hand side is
(_a)’ which also equals 1. So the property is true forn = 1.
Show that for all integers k > 1, if the property is true for
n = k then it is true for n = k + 1: Let k be any integer
with k > 1.

[Suppose the property 1+3+5+---+(@2n—1) =
n? is true when k is substituted for n.]

Suppose 1 +3+5+---+ k-1 =0
[This is the inductive hypothesis.]

[We must show that the property is true when k + 1 is
substituted for n].

We must show that
© - @ 425

But the left-hand side of equation (4.2.5) is

14345+ +Qk+1-1
=1+4+3+5+---+@2k+1) byalgebra
=[14+3+5+--+Qk—D]+ 2k+1)

the next-to-last term is 2k — 1 because _(1

— K+ @Qk+1 by D
= (k+1)*> byalgebra

which is the right-hand side of equation (4.2.5) [as was fo

be shown].

[Since we have proved the basis step and the inductive
step, we conclude that the given statement is true.]
The proof above was heavily annotated to help make its
logical flow more obvious. In standard mathematical writ-
ing, such annotation is omitted.

Prove each statement in 6-9 using mathematical induction. Do
not derive them from Theorem 4.2.2 or Theorem 4.2.3.

6. Forallintegersn > 1, 2+ 4+ 6+ ---+2n=n"+n.

N
{ 7. For all integers n > 1,
\ el

n(5n — 3)

14+6+11+164-+(Gn—4) = ——

8. Forallintegersn > 0,1 +2+22 4 .- 42" =2 — 1.

9. For all integers n > 3,
4(4" — 16
43+4“+45+~--+4"=(_.3__).

Prove each of the statements in 10-17 by mathematical induc-
tion.
_ n(n+1DQ2n+1)

10. 12422 4--- 4 n? 3

n>1.

, for all integers

. nTP
11/.: BP4+2B 4. 4nd= [ZL%—J—_—):\ , for all integers n > 1.

1

n
——— = ——, for all integers
+n(n+l) nrl or all integer

1

1 —_— o
2y trs T
n

n—1 -
— 1
13. ) i+ = 7—(1‘—;("4“ for all integers n > 2.

i=1
’_\\’ n+l
Ll4.,3 Zi .2l =5 . 272 4 2, for all integers n > 0.
2
i=1
H15. ) i(i) = (n+ 1!~ 1, forall integersn > 1.

i=1

1 1 1 n+1 ;
16. (1 - _27) : (1 - ¥> . (1 — ;E) == , for allinte-

gersn > 2.

Use

form




by algebra
+ @2k +1)

cause ﬂ

[as was to

e inductive
2.]

) make its
itical writ-

iction. Do
3.

2 +n.

-3)

m+l 1

:al induc-

integers

sn > 1.

integers

all inte-

7 H : ! L forallint >0
: . = , for all integers n > 0.
. I 2v12i+2) T @™ Eem R

H %18, If x is areal number not divisible by m, then for all integers
n>1,

sinx +sin3x +sinS5x +--- +sin 2n — Dx

1 —cos2nx
2sinx

Use the formula for the sum of the first n integers and/or the
formula for the sum of a geometric sequence to find the sums in
19-28.

19. 4+8+12+ 164 --- 4200

—_—

[ 20\5+10+15+20+ -+~ +300

[

21. 3+44+54+64---4 1000
22. 74+84+9+10+---+ 600
23. 1+2434---4 (k — 1), where k is an integer and k > 2

24,8 142+4+224...42%
b. 2422423 4...42%
7 @3—1—32+33—I—~--+3",wherenisanintegerwithnZ1
{’26.353 +5%+ 5 + ... + 5% where k is any integer with k& > 3.

g

271+1+1+ +1 here 7 i itive int

. ST R nisa v

5 +5 57+ Where n is a positive integer

28. 1—2+422—~23 4 ... 4 (—1)"2", where 7 is a positive in-
teger '

H 29. Find a formula in 7, a, m, and d for the sum (a + md) +
@+ m+1d)+ @+ m+2)d)+---+ (a+ (m+n)d),
where m and n are integers, n > 0, and a and d are real
numbers. Justify your answer.

30. Find a formula in a, , m, and n for the sum ar™ + ar™ ! +
ar™? 4 ... 4 g™, where m and n are integers, n > 0,
and g and r are real numbers. Justify your answer.

31.

32.

% 33.

H X% 34,
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You have two parents, four grandparents, eight great-

grandparents, and so forth.

a. If all your ancestors were distinct, what would be the
total number of your ancestors for the past 40 genera-
tions (counting your parents’ generation as number one)?
(Hint: Use the formula for the sum of a geometric se-
quence.)

b. Assuming that each generation represents 25 years, how
long is 40 generations?

c. The total number of people who have ever lived is ap-
proximately 10 billion, which equals 10'° people. Com-
pare this fact with the answer to part (a). What do you
deduce?

Find the mistake in the following proof fragment.

Theorem: For any integern > 1,

s+ DEn+ D)

P4+2% 4. 4n c

“Proof (by mathematical induction): Certainly the
theorem is true for n = 1 because 12 = 1 and
10+ D@2 -14+1)
6

For the inductive step, suppose that for some integer k > 1,
_k(e+1D)2k+1)
a 6
E+D(k+D+DQE+1)+1)

7 sias
Use Theorem 4.2.2 to prove that if m and n are any positive
integers and m is odd, then Zfz_ol (n + k) is divisible by m.
Does the conclusion hold if m is even? Justify your answer.

= 1. So the basis step is true.

k? . We must show that (k 4 1)? =

2

Use Theorem 4.2.2 and the result of exercise 10 to prove
that if p is any prime number with p > 5, then the sum of
squares of any p consecutive integers is divisible by p.

4.3 Mathematical Induction Il

A good proof is one which makes us wiser. — 1. Manin, A Course in Mathematical Logic, 1977

In natural science courses, deduction and induction are presented as alternative modes
of thought—deduction being to infer a conclusion from general principles using the laws
of logical reasoning, and induction being to enunciate a general principle after observ-
ing it to hold in a large number of specific instances. In this sense, then, mathematical
induction is not inductive but deductive. Once proved by mathematical induction, a the-
orem is known just as certainly as if it were proved by any other mathematical method.
Inductive reasoning, in the natural sciences sense, is used in mathematics, but only to
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We must show that gz = 2 - S®TD-1 =2. 5%,
But the left-hand side of the equation is
Akl = 5a(k+1)_1 by definition of a1, a2, a3, . ..
= Say Csince (k+ 1) —1=k
=5-2- 5k_1) by inductive hypothesis
=2-(5- Sk_l) by regrouping
it the =2.5¢ by the laws of exponents

which is the right-hand side of the equation [as was to be shown].

LB [Since we have proved the basis step and the inductive step, we conclude that the
' ‘ SJormula holds for all terms of the sequence.] |

stion to

Exercise Set 4.3

g 1. Based on the discussion of the product (1 — %)(1 - %) 6. For each positive integer n, let P (n) be the property
£ 1- 1) -(1- I) at the beginning of this section, con- i B g
E : jecture a formula for general n. Prove your con]ecture by 7= 1 48 Glvisible by 4

mathematical induction. . Write P(0). Is P(0) true?

. Write P (k).

. Write P(k + 1).

. In a proof by mathematical induction that this divisibil-
ity property holds for all integers n > 0, what must be

shown in the inductive step?

. Experiment with computing values of the product
I+ A+ DA+ 1)1+ 1) for small values of n to
conjecture a formula for this product for general n. Prove
your conjecture by mathematical induction.

a0 o

. Observe that

roperty 7. For each positive integer n, let P(n) be the property
1 1
— == 2" DL
13 3 =Rl
1 1 2 a. Write P(2). Is P(2) true?
= tr ==z b. Write P (k).
B3 353 c. Write P(k + 1).
L + e + e _ §_ d. In a proof by mathematical induction that this inequality
1-3 3.5 5.7 17 holds for all integers n > 2, what must be shown in the
1 1 1 14 inductive step?
s tretesF
) 1-3 -5 777979 Prove each statement in 8-23 by mathematical induction.
‘u begin Guess a general formula and prove it by mathematical in- 8. 5" — 1is divisible by 4, for each integer n > 0.
Suppose duction.
ity and 9. 7" — 1 is divisible by 6, for each integer n > 0.
. Observe that .
10. n® — 7n + 3 is divisible by 3, for each integer n > 0.
51“1 = 1=1, 2 o g i i
11. 3°" — 1 is divisible by 8, for each integer n > 0.
7 is true 1—4=—(1+2), y g
1—449=14+2+3 12. For any integer n > 1, 7" — 2" is divisible by 5.
rue for 1—-449—-16=—-(1+2+3+4), H 13. For any integern > 1, x" — y” is divisible by x — y, where
is is the 1—44+9—-16425=14+24+3+41+5, x and y are any integers with x # y.
Guess a general formula and prove it by mathematical in-  H 14- n® —n is divisible by 6, for each integer n > 2.
duction. 15. n(n?® + 5) is divisible by 6, for each integer n > 1.
ussed B - Evaluate the sum 2 b for nn.=1,2,3,4, and 5. 16. 2" < (n+ 1)}, for all integers n > 2.

(k + D!
Make a conjecture about a formula for this sum for general
7, and prove your conjecture by mathematical induction. 18. 5" 4+ 9 < 6", for all integers 7 > 2.

17. 14 3n < 4", for every integer n > 0.
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19. n? < 2%, for all integers n > 5.

_ 20. 2" < (n 4+ 2)!, for all integers n > 0.

2. I ! + L 4+t ! for all integers n > 2
i< —=F =+t —, integers n > 2.
N n ¢
22. 1+ nx < (1 + x)", for all real numbers x > —1 and inte-
gersn > 2.
23. a. n® > 2n + 1, for all integers n > 2.
b. n! > n?, for all integers n > 4.

24. A sequence ay, ay, s, . . . is defined by letting a; = 3 and
a; = Tay_, for all integers k > 2. Show that a, =3 Ny
for all integers n > 1.

25. A sequence bg, b, b, ... is defined by letting bo-= 5 and
by = 4 + by_; forall integers k > 1. Show that b, > 4n for
all integers n > 0.

26. A sequence ¢y, Ci, €2, ... is defined by letting co = 3 and
¢x = (ce_1)? for all integers k > 1. Show that ¢, = 3% for
all integers n > 0.

27. A sequence dy, dy, ds, . .. is defined by letting d; =2 and

dy—
dy = _kic_l for all integers k > 2. Show that for all integers
2
n>1,d,=—.
n!
.28. Prove that for all integers n > 1,

1 143  1+3+45

37547 7+9+11

14344+ @n-10)
T+t @n-1)

29. As each of a group of business people arrives at a meeting,
each shakes hands with all the other people present. Use
mathematical induction to show that if # people come to the
meeting then [n(n — 1)]/2 handshakes occur.

In order for a proof by mathematical induction to be valid, the
basis statement must be true for n = a and the argument of the
inductive step must be correct for every integer k > a.In30and
31 find the mistakes in the “proofs” by mathematical induction.

30. “Theorem:” For any integer n > 1, all the numbers in a set
of n numbers are equal to each other.

“Proof (by mathematical induction): It is obviously true
that all the numbers in a set consisting of just one number
are equal to each other, so the basis step is true. For the
inductive step, let A = {ay, as, ..., Gk, Gr1} be any set of
k + 1 numbers. Form two subsets each of size k:

B={a;,a,0a3,...,4} and

C ={ai,a3,a4,...,4%+}
(B consists of all the numbers in A except a4, and C
consists of all the numbers in A except a,.) By inductive

hypothesis, all the numbers in B equal a; and all the num-
bers in C equal a; (since both sets have only k¥ numbers).

But every number in A is in B or C, so all the numbers in
A equal a;; hence all are equal to each other.”

31. “Theorem:” For all integers n > 1, 3" — 2 is even.

“Proof (by mathematical induction): Suppose the theo-
rem is true for an integer k, where k > 1. That is, suppose
that 3% — 2 is even. We must show that 3*+! — 2 is even.
But

R+ _9=3k.3_2=3(1+2)-2
=@3F-2)+3F-2

Now 3* — 2 is even by inductive hypothesis and 3.2 s
even by inspection. Hence the sum of the two quantities is
even (by Theorem 3.1.1). It follows that 3%+ — 2 is even,
which is what we needed to show.” .

32. An L-tromino, or tromino for short, is similar to a domino
butis shaped like an L: B. Call acheckerboard thatis formed
using m squares on a side an m x m checkerboard. If one
square is removed from a 4 x 4 checkerboard, the remain-
ing squares can be completely covered by trominos. For
instance, a covering for one such board is the following:

Use mathematical induction to prove that for any integer
n > 1, if one square is removed from a 2" x 2" checker-
board, the remaining squares can be completely covered by
trominos.

33. In a round-robin tournament each team plays every other
team exactly once. If the teams are labeled 71, I, . . ., T,,
then the outcome of such a tournament can be represented
by a drawing, called a directed graph, in which the teams
are represented as dots and an arrow is drawn from one dot
to another if, and only if, the team represented by the first
dot beats the team represented by the second dot. For ex-
ample, the directed graph below shows one outcome of a
round-robin tournament involving five teams, A, B, C, D,
and E.

D

Use mathematical induction to show that in any round-robin
tournament involving » teams, where n > 2, it is possible to
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Furthermore, r < d. [For suppose r > d. Then
n—dg@g+1)=n—dg—d=r—d=0,

and son — d(q + 1) would be a nonnegative integer in S that would be smaller than
r. But r is the smallest integer in S. This contradiction shows that the supposition
r > d must be false.] The preceding arguments prove that there exist integers  and
q for which

n=dg+r and 0<r <d.

[This is whdt was to be shown.]

Another consequence of the well-ordering principle is the fact that any strictly de-
creasing sequence of nonnegative integers is finite. That is, if 7y, 72, 73, . . . is a sequence
of nonnegative integers satisfying

i > Fit1

foralli > 1, then ry, 7o, 73, . . . is a finite sequence. [For by the well-ordering principle
such a sequence would have to have a least element ry. It follows that ry must be the
final term of the sequence because if there were a term ryy, then since the sequence is
strictly decreasing, riy1 < ry, which would be a contradiction.] This fact is frequently
used in computer science to prove that algorithms terminate after a finite number of steps
and to prove that the guard conditions for loops eventually become false. It was also used
implicitly in the proof of Theorem 3.3.2 and to justify the claim in Section 3.8 that the
Euclidean algorithm eventually terminates.

Exercise Set 4.4

1. Suppose ay, a3, as, - . . is a sequence defined as follows: 5. Suppose that e(.), e1, e, . .. is a sequence defined as follows:
ay=1,a, =3, eg=1,e1 =2,e, =3,
ay = ay— + 204, for all integers k£ > 3. er = ex—1 + exr— + er—3 for all integers £ > 3.
Prove that a, is odd for all integers n > 1. Prove thate, < 3" for all integers n > 0.
2 Supposé by, by, bs, .. . is a sequence defined as follows: 6. Suppose that f3, f2, f3, .. .1s asequence defined as follows:
by=4,b, =12 fi=1fi=2- flip forallintegersk > 2.

by = by + by, for all integers k = 3. Prove that f, < n for all integers n > 1.

Prove that b, is divisible by 4 for all integers 7 > 1. 7. Suppose that go, g1, &2, - - - i$ a sequence defined as follows:
3. Suppose that ¢y, ¢y, ¢2, - - - is a sequence defined as follows: g =12, 8 =29,
cp=2,¢c1=2,¢c0 =6, . 8k = 581-1 — 681> for all integers k > 2.
¢k = 3cp-3  forall integers k > 3. Prove that g, = 5-3" + 7 - 2" for all integers n > 0.
Prove that c, is even for all integers n > 0. 8. Suppose that kg, A1, hy, . . . is a sequence defined as follows:
4. Supposethatds, d;, ds, . . . is a sequence defined as follows: ho=1,h; =2,hy =3,
4= %» - %% hy = hy—y + hg—y + hy—3 for all integers k > 3.

a. Prove that k, < 3" for all integers n > 0.
dy = dy—; - dr—p for all integers k > 3. b. Suppose that s is any real number such that s> > 5% +
s + 1. (This implies that s > 1.83.) Prove that s, < s"

Prove that 0 < d, < 1 for all integers n > 0. forall > 2.
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. Define asequence a;, ay, as, . .. asfollows: a; = 1,43 =3,

and a; = ap_1 + ax_, for all integers k > 3. (This sequence
is known as the Lucas sequence.) Use strong mathematical

7 n
induction to prove that a, < (Z) for all integersn > 1. .

You begin solving a jigsaw puzzle by finding two pieces
that match and fitting them together. Each subsequent step
of the solution consists of fitting together two blocks made
up of one or more pieces that have previously been assem-
bled. Use strong mathematical induction to prove that the
number of steps required to put together.all n pieces of a
jigsaw puzzleis n — 1.

Use strong mathematical induction to prove the existence
part of the unique factorization theorem: Every integer
greater than or equal to 2 is either a prime number or a
product of prime numbers.

Any product of two or more integers is a result of successive
multiplications of two integers at a time. For instance, here
are a few of the ways in which a;a,a3a4 might be computed:
(a1a2) (asas) or ((ayaz)az)as) or a1((aza3)as). Use strong
‘mathematical induction to prove that any product of two or
more odd integers is odd.

Any sum of two or more integers is a result of successive
additions of two integers at a time. For instance, here are a
few of the ways in which a; + @, + a3 + a4 might be com-
puted: (a1 + a2) + (a3 +a4) or ((a1 +az) +a3) +as) or
ay + ((a» + a3) + a4). Use strong mathematical induction
to prove that any sum of two or more even integers is even.

. Use strong mathematical induction to prove that for any in-

teger n > 2, if n is even, then any sum of n odd integers is
even, and if # is odd, then any sum of » odd integers is odd.

. Compute 4!, 42,43, 4%, 45,45, 47, and 48. Make a conjec-

ture about the units digit of 4* where # is a positive integer.
Use strong mathematical induction to prove your conjecture.

. Compute 3°, 31, 32,33, 3% 35 36 37 38 39 and 3!%. Make

a conjecture about the units digit of 3" where n is a positive
integer. Use strong mathematical induction to prove your
conjecture.

- Find the mistake in the following “proof” that purports to

show that every nonnegative integer power of every nonzero
real number is 1.

“Proof: Letr be any nonzero real number and let the prop-
erty P(n) be the equation “7"* = 1.”

Show that the property is true for r = 0: The property is
true for n = 0 because ¥ = 1 by definition of zeroth power.
Show that for all integers k > 0, if the property is true
Jor all integers i with 0 < i < k, then it is true for k: Let
k > 0 be an integer, and suppose that r* = 1 for all integers

18.

19.

20.

H 21.

22.

% 23.

24.

25.

i with 0 < i < k. [We must show that r* = 1.] Now

k (k=1)+(k—1)—(—2)  because (k — 1) +

rr=r
P k-D—(k-2)=k
= by the laws of exponents
k= .
1.1
= — by inductive hypothesis
=1

Thus 7 = 1 [as was to be shown].

[Since we have proved the basis step and the inductive step,
we conclude that r™ = 1 for all integers n > 0.]”

Use the well-ordering principle to prove Theorem 3.3.2:
Every integer greater than 1 is divisible by a prime number.

Use the well-ordering principle to prove that every integer
n greater than 1 is either a prime number or a product of
prime numbers.

The Archimedean property for the rational numbers states
that for all rational numbers r, there is an integer » such that
n > r. Prove this property.

Use the result of exercise 20 and the well-ordering principle
for the integers to show that given any rational number r,
there is an integer m such thatm <r <m + 1.

Use the well-ordering principle to prove that given any inte-
ger n > 1, there exists an odd integer 7 and a nonnegative
integer k such thatn = 2 - m.

Use the well-ordering principle to prove that if @ and b are
any integers not both zero, then there exist integers u and v
such that ged(a, b) = ua + vb. (Hint: Let S be'the set of
all positive integers of the form ua + vb for some integers
uand v.)

Suppose P (n) is a property such that

1. P(0), P(1), P(2) are all true,

2. for all integers k > 0, if P (k) is true, then P (3k) is true.
Must it follow that P(n) is true for all integers n > 07 If
yes, explain why; if no, give a counterexample.

Prove that if a statement can be proved by strong mathe-
matical induction, then it can be proved by ordinary math-
ematical induction. To do this, let P(n) be a property that
is defined for integers n, and suppose the following two
statements are true:

1. P(a),P(a+1),Pa+2),..., P().

2. For any integer k > b, if P (i) is true for all integers i

witha < i < k, then P (k) is true.

The principle of strong mathematical induction would
allow us to conclude immediately that P(n) is true for all
integers n > a. Can we reach the same conclusion using the
principle of ordinary mathematical induction? Yes! To see



