Math 1600, Section 11, Fall 2016 – Statistics HW 13 – Due December 9, 2016

Name:
True or False: 1. Confidence intervals based on the <i>t</i> -distribution are wider than those based on the standard normal distribution. T or F
2. A hypothesis test for a sample mean with small samples and sample size of <i>n</i> has <i>n</i> /2 degrees of freedom. T or F
3. The <i>t</i> -distribution has less variability than the standard normal distribution. T or F
Short Answer:
4. The quantity $T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$ has degrees of freedom.
5. The <i>t</i> -distribution is symmetric about
6. The upper .01 point of the <i>t</i> -distribution with 14 d.f. is
7. The lower .05 point of the <i>t</i> -distribution with 7 d.f. is
8. The 97.5th percentile of the t-distribution with 23 d.f. is
9. For the t-distribution with 11 d.f. the probability T > 2.9 is between and
Computations: 10. Given the following, compute a 95% confidence interval for the population mean, μ . $n = 17$, $\sum x_i = 220$, $\sum (x_i - \overline{x})^2 = 75$

11. A manager wants to estimate the time it takes to process an order. A random sample of 6 recent orders yields the following times:

Determine a 90% confidence interval for the true time to fill orders. State any assumptions you make.

True or False: 1. The χ^2 distribution is an example of a symmetric distribution. T or F
2. Inferences on a population standard deviation are based on the <i>t</i> -distribution. T or F
3. If a 95% confidence interval contains a particular value, μ_0 , then the two sided hypothesis test with a null hypothesis using μ_0 with α = .05 would lead to a rejection of the null hypothesis. T or F
Short Answer: 4. The upper 5% of the χ^2 distribution with 8 degrees of freedom is
5. 30.19 is the upper% of the χ^2 with 17 degrees of freedom.
6. The lower 5% of the χ^2 distribution with 22 degrees of freedom is
(For 7 and 8.) Suppose that from a random sample a 90% confidence interval for the population mean has been found to be (12.8, 14.3).
7. Would H_0 : $\mu = 15$ be rejected in favor of H_1 : $\mu \neq 15$ at $\alpha = .10$? a) yes b) no c) cannot tell
8. Would $H_0: \mu = 13$ be rejected in favor of $H_1: \mu \neq 13$ at $\alpha = .10$? a) yes b) no c) cannot tell
Computations: 9. For data from a set of n=10 observations, one has calculated the 95% confidence interval for or and obtained the result (4.05, 10.75).
a. What was the standard deviation <i>s</i> for the sample? (Hint: Examine how s enters the formula of a confidence interval.)

b. Calculate a 90% confidence interval for σ .