Math 1600, Section 11, Fall 2016 - Statistics
 HW 13 - Due December 9, 2016

Name: \qquad
True or False:

1. Confidence intervals based on the t-distribution are wider than those based on the standard normal distribution.
T or F
2. A hypothesis test for a sample mean with small samples and sample size of n has $n / 2$ degrees of freedom.
T or F
3. The t-distribution has less variability than the standard normal distribution.

T or F

Short Answer:

4. The quantity $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has \qquad degrees of freedom.
5. The t-distribution is symmetric about \qquad .
6. The upper .01 point of the t-distribution with 14 d.f. is \qquad .
7. The lower .05 point of the t-distribution with 7 d.f. is \qquad .
8. The 97.5 th percentile of the t-distribution with 23 d.f. is \qquad .
9. For the t -distribution with 11 d.f. the probability $\mathrm{T}>2.9$ is between \qquad and
\qquad -.

Computations:
10. Given the following, compute a 95% confidence interval for the population mean, μ. $n=17, \sum x_{i}=220, \sum\left(x_{i}-\bar{x}\right)^{2}=75$
11. A manager wants to estimate the time it takes to process an order. A random sample of 6 recent orders yields the following times:
$\begin{array}{lllll}28 & 26 & 25 & 30 & 22\end{array} 34$
Determine a 90% confidence interval for the true time to fill orders. State any assumptions you make.

True or False:

1. The χ^{2} distribution is an example of a symmetric distribution.

Tor F
2. Inferences on a population standard deviation are based on the t-distribution.

T or F
3. If a 95% confidence interval contains a particular value, μ_{0}, then the two sided hypothesis test with a null hypothesis using μ_{0} with $\alpha=.05$ would lead to a rejection of the null hypothesis.
T or F

Short Answer:

4. The upper 5% of the χ^{2} distribution with 8 degrees of freedom is \qquad .
5. 30.19 is the upper \qquad $\%$ of the χ^{2} with 17 degrees of freedom.
6. The lower 5% of the χ^{2} distribution with 22 degrees of freedom is \qquad .
(For 7 and 8.) Suppose that from a random sample a 90% confidence interval for the population mean has been found to be $(12.8,14.3)$.
7. Would $H_{0}: \mu=15$ be rejected in favor of $H_{1}: \mu \neq 15$ at $\alpha=.10$?
a) yes
b) no
c) cannot tell
8. Would $H_{0}: \mu=13$ be rejected in favor of $H_{1}: \mu \neq 13$ at $\alpha=.10$?
a) yes
b) no
c) cannot tell

Computations:

9. For data from a set of $n=10$ observations, one has calculated the 95% confidence interval for σ and obtained the result $(4.05,10.75)$.
a. What was the standard deviation s for the sample? (Hint: Examine how s enters the formula of a confidence interval.)
b. Calculate a 90% confidence interval for σ.
